LE UNITA' DI MISURA DELLA RADIOATTIVITA'

0.000	Gray	MISURA LA DOSE ASSORBITA	$Gy = J \times Kg^{-1} $ (UNITA' S.I.)
	Sievert	MISURA DEL DANNO	$Sv = J \times Kg^{-1}$ (UNITA' S.I.)
100	Röntgen	MISURA RADIAZIONE IONIZZANTE	(NO S.I.)
	Bequerel	MISURA DELL' ATTIVITA' DEL RADIONUCLIDE	$Bq = 1 dis \times s^{-1} \qquad (UNITA' S.I.)$
0000	Curie	MISURA DELL'ATTIVITA' DEL RADIONUCLIDE	$Ci = 3.7 \times 10^{10} Bq$ (NO S.I.)
	Rutherford	MISURA DELL'ATTIVITA' DEL RADIONUCLIDE	Rd = 10 ⁶ Bq (NO S.I.)
10 V 8 8	Rad	MISURA LA DOSE DI RADIAZIONE ASSORBITA	Rad = 0,01 Gy (UNITA' S.I.)
100	Rem	MISURA LA DOSE DI RADIAZIONE EQUIVALENTE	Rem = Rad × Q (UNITA' S.I.)

Gray

Il gray (Gy) è l'unità di misura della dose assorbita di radiazione del Sistema Internazionale (S.I.).

Un'esposizione di 1 gray corrisponde ad una radiazione che deposita un <u>Joule per Kg</u> di materia (sia tessuti biologici che qualsiasi altra cosa). Dimensionalmente si ha:

$$1 \text{ Gy} = 1 \text{J} \times \text{Kg}^{-1}$$

Il gray ha sostituito il Rad, talvolta utilizzata; vale: 1 Gy = 100 Rad.

Il gray fu definito nel 1940 da Louis Harold Gray.

Sievert

Il sievert (Sv) è l'unità di misura della dose equivalente di energia nel S I ed è una misura degli effetti e del danno provocato dalla radiazione su un organismo.

La dose equivalente ha le stesse dimensioni della dose assorbita, ovvero energia per unità di massa:

 $1Sv = 1J \times Kg^{-1}$

CAUSA O PRATICA MEDICA	DOSE EQUIVALENTE
Fondo naturale di radiazione annuo (media)	2,4 mSv
Massima dose di fondo naturale annuo (Ramsar)	260 mSv
radiografia convenzionale	1 mSv
TAC, tomografia computerizzata	3 ~ 4 mSv
PET, tomografia ad emissione di positroni	10 ~ 20 mSv
Scintigrafia	10 ~ 20 mSv
Radioterapia	10 ~ 40 Sv

Dimensionalmente si ha:

$$1 \, \text{Sv} = 1 \, \text{J} \times \text{Kg}^{-1}$$

oltre al Sv si utilizza il suo sottomultiplo:

e meno significativamente:

il sievert ha sostituito il Rem, si ha:

$$1 \text{ Sv} = 100 \text{ rem}$$

Dosi equivalenti tipiche

(Per dare un'idea del valore di 1 Sv)

EVENTO	DOSE ASSORBITA
RADIOATTIVITA' NATURALE	2,4 × 10 ⁻³ Sv per anno
RADIOGRAFIA ORDINARIA	1×10^{-3} Sv
TAC	$3 \sim 4 \times 10^{-3} \text{ SV}$
PET o SCINTIGRAFIA	10 ai 20 × 10 ⁻³ Sv
RADIOTERAPIA	decine di Sv, anche oltre i 40 Sv, concentrate sul tumore

DOSE EQUIVALENTE	EFFETTI BIOLOGICI
1 Sv	alterazioni temporanee dell'emoglobina
2 ~ 5 Sv	nausea, perdita dei capelli, emorragie
4 Sv	morte nel 50% dei casi
6 Sv	sopravvivenza improbabile

Relazione Sv - Gy

 Il Gy rappresenta in assoluto una dose di energia assorbita da una unità di massa (A)

 la dose equivalente e il Sv riflettono piuttosto gli effetti biologici della radiazione sull'organismo. I diversi tipi di radiazione possono essere infatti più o meno dannosi per l'organismo • La dose equivalente H si ottiene moltiplicando la dose assorbita A per un fattore adimensionale w_r dipendente dal tipo di radiazione:

$$H = A \times W_r$$

RADIAZIONE	Wr	dose equivalente H per Gy di dose assorbita A
Raggi X, gamma o beta	1	1 Sv
Raggi alfa	20	20 Sv
Neutroni		da 3 a 11 Sv a seconda del fascio

Röntgen

- Il röntgen (R) è l'unità di misura della radiazione ionizzante riferibile solamente ai raggi X e raggi gamma. Non fa più parte delle unità del SI
- E' definito come la quantità di radiazione che produce in un campione di aria di 1 mL a 0 °C e 1 atm, una ionizzazione pari ad una carica elettrica di 3,3356 × 10⁻¹⁰C, ovvero:

 $2,08 \times 10^9$ coppie di ioni.

Esempi

- Un orologio luminoso produce circa 5 milliroentgen (mR) per anno.
- Una radiografia produce circa 500 mR.

Becquerel

 Il becquerel (Bq) è l'unità di misura del S.I. dell'attività di un radionuclide ed è definita come l'attività di un radionuclide che ha un decadimento al secondo. dimensionalmente si ha:

$$1 Bq = 1 dis \times s^{-1}$$

EQUIVALENZE RISPETTO ALLE VECCHIE UNITÀ				
1 Rd	10 ⁶ Bq = 1 MBq (megaBq)			
1 Bq	2,7×10 ⁻¹¹ Ci = 27 picoCi			

• Il Bq deve il suo nome a Antoine Henri Bequerel, che nel 1903 vinse il premio Nobel per la fisica insieme a Marie e Pierre Curie.

Curie

- Il curie (Ci) è un'<u>unità di misura</u> dell'<u>attività</u> di un <u>radionuclide</u>.
 Venne adottato durante il *Congresso Internazionale di Radiologia* di Bruxelles del 1910, presieduto da Marie Curie.
- Un Ci è pari approssimativamente all'attività di 1 g di ²²⁶Ra,
 scoperto da Marie e Pierre Curie, ed equivale a:

37 miliardi di decadimenti al secondo.

• Il Ci è stato sostituito dal bequerel (Bq) nel S.I.

	FOUIVALENZE				
à	1 Ci	3,7 × 10 ¹⁰ Bq	=	37 GBq	(gigaBq)
a	1 Bq	2,7 × 10 ⁻¹¹ Ci	on Landage	27 pCi	(picoCi)

Rutherford

• Il rutherford (Rd), così chiamato in onore di Ernest Rutherford è un'unità di misura della radioattività non più in uso, corrisponde a:

UNITA'	EQUIVALENZE		
1 Rd	10^6 Bq = 1 MBq	o anche 1 Bq = 2	LO ⁻⁶ Rd

• È ora sostituito dall'unità SI bequerel (Bq).

Rad

• Il **rad** (*Radiation Absorbed Dose*) è un'unità di misura della dose di radiazione assorbita, vale:

100 erg × grammo

Il rad è stato sostituito dal Gy nel SI

• 1 Rad = 0,01 Gy = 0,01 joule di energia assorbiti da un Kg di tessuto.

Rem

• Il **rem** è un'<u>unità di misura</u> della <u>dose equivalente</u> di <u>radiazioni</u>. La parola <u>rem</u> è un <u>acronimo</u> in <u>lingua inglese</u> per "<u>radiaton equivalent man</u>" ovvero <u>radiazione</u> equivalente per l'uomo; indica la quantità di radiazione necessaria a produrre un effetto biologicamente significativo non necessariamente dannoso (radiolisi della molecola dell'acqua e creazione di coppie di ioni, radicali liberi) è importante il concetto di detrimento e effetti biologici a lungo termine.

• Il rem è definito come il prodotto della dose assorbita espressa in rad per un fattore di qualità Q che tiene conto del differente impatto biologico riferito agli organi più o meno radio sensibili (tiroide, gonadi, cristallino le più sensibili) ai diversi tipi di radiazione

RADIAZIONE	FATTORE DI QUALITA' (Q)
raggi X e raggi gamma	1
neutroni	tra 5 e 20 a seconda dell'energia
radiazione alfa	20

•Nel SI il **rem** è stato sostituito dal **SV** con la conversione:

1 Sv = 100 rem

 Poiché la dose di 1 rem è piuttosto elevata, si fa spesso uso del suo sottomultiplo, il millirem (10⁻³rem).