

 Theremino System

Theremino
Automation V7.9

theremino System - Theremino Automation - February 26, 2025 - Page 1

Main Index

Premises ... 6

Run multiple instances of Automation .. 7
Load and run programs .. 7
Edit and save programs .. 8
Program execution .. 9
Executed lines visualization ... 10
The vertical scrollbar and the Bookmarks .. 11
Test the values during the execution .. 12
Simple programs to start .. 13
Program structure ... 14
Resize the application controls .. 15
Keywords .. 16

Keywords one by one .. 17

Array .. 17
ArrayClear ... 17
ArrayLength function .. 17
ArrayToString function .. 17
Beep .. 18
Beep Frequency Duration ... 18
Beep "String of chars" .. 18
Button ... 19
Button - Identify the corresponding labels ... 19
Button Text ... 20
Button Disabled / Enabled .. 20
Button Slot .. 20
Button Color ... 21
Button Color Flashing and RGB .. 22
Button used as Labels .. 23
Button Text and Identifiers ... 24
Button - Using formula instead of numbers ... 25
Button that change state ... 26
Buttons with images .. 27
COM (serial port) - Commands ... 28
COM (serial port) - Functions ... 29
COM (serial port) - Receive buffer ... 30
Controls .. 31
Controls - SetCursorPos <X Y> .. 31
Controls - SetBackColor <color> ... 31
Controls - TextBox ... 32

theremino System - Theremino Automation - February 26, 2025 - Page 2

Controls - Close and resize the TextBox ... 33
For - Next .. 34
For - Next with Step ... 35
For - Next instead of While .. 36
Exit ... 37
Exit "n" .. 38
Goto - Gosub - Return ... 39
Eliminate Gosubs and send parameters to Functions .. 39
If - Else - Endif .. 40
Key ... 41
Label .. 42
Eliminate Gosubs and send parameters to Functions .. 42
Label EventStop ... 43
Label EventTimer ... 44
Label Event_DroppedFile .. 45
Label Event_ExternalCommands ... 46
Commands from COBOT to Automation ... 47
Commands from Automation to COBOT ... 48
External commands to Automation Buttons .. 49
Load (Applications) .. 50
Load OpenApps ... 51
Load CloseApps ... 51
Load CloseAll ... 51
Load CloseApps file-name .. 52
Load CloseApps process-name ... 52
Load CloseApps Windows .. 52
Load Slots / Save Slots ... 53
Load Vars / Save Vars .. 53
Load Vars - Beware of Initializations ... 54
Load (Images, Videos and Sounds) .. 55
Load (txt, pdf, doc, etc...) ... 56
Load (Program) ... 57
Load (Variable from File) .. 57
Load (web address) .. 58
Load (options for web pages) .. 59
The "Option" statements .. 60
PressKeys ... 61
SendKeys .. 62
Print ... 63
Save ... 64
Select - Case - CaseElse - EndSelect .. 65
Select - Case (special features) .. 66

theremino System - Theremino Automation - February 26, 2025 - Page 3

Slot .. 67
The Command Slot .. 68
SlotText ... 69
Speed .. 69
Stop, End .. 70
TTS (Text to speech) .. 70
Variable ... 71
Variable - Immediate assignments ... 72
VarsFromFile .. 73
Wait .. 74
Window commands ... 74
Window ... 75

Calling functions .. 76

Function parameters ... 77

Expressions and Functions .. 78

Expressions results ... 79
The Slot () function .. 79
Numerical functions .. 80
String functions ... 81
Conversion functions .. 82
The Format() and Str() functions .. 83
The MouseX, Y, XP and YP functions .. 84
The MouseButtons function ... 84
The MouseWheel function .. 84
The functions that read the pixel colors ... 85
The Key() function ... 86
The “Input” function .. 86
The “Message” function .. 87
The date and time functions ... 88
The “ElapsedTime” function .. 88
The filtering functions ... 89
The “Media” functions .. 90
The XML file functions .. 91
The File and Folder functions .. 92

Auto indentation ... 93

Constructs auto completing ... 93

 Windows and Menus ... 94

The control buttons .. 94
The application menu .. 95
The program menu .. 96
Full Screen operation .. 98

theremino System - Theremino Automation - February 26, 2025 - Page 4

The top bar controls .. 99
The bottom bar controls ... 100
The Debug Window ... 101
The Debug Window (Breakpoints) ... 102
The Debug Window (Watches) ... 103
The Debug Window (Exec) .. 104
The Debug Window (Pause Button) ... 105
The Debug Window (Pause Button with LEDs) .. 106
The Debug Window (Pause Button adapters) .. 107
The Debug Window (Recycle Bin) ... 108

Programming tecniques .. 109

Special applications and folders .. 110
Open files with Notepad and other apps ... 111
Open folders ... 112
The "Theremino Editor" application .. 113
Start "Theremino Editor" with files .. 114
Open sequences with Notepad .. 114
Using "Sequences" .. 115
Using the graphic chars .. 116

Sew Machines functions .. 117

Sew functions ... 118
Sew functions - Examples and Notes .. 119

Known issues ... 120

theremino System - Theremino Automation - February 26, 2025 - Page 5

Premises

We simplified and minimized everything possible to facilitate those who have no
experience in programming.

This language is extremely easy to use and understand, but complex operations
are also possible, such as playing audio and video, or surfing the internet.

With a single instruction performing tasks that in other languages require
specialized knowledge and many pages of code.

Theremino Automation limits

In Automation instructions are few, about twenty. No classes, types, structures
threads, and none complex mechanisms of the classic programming languages.

So for complex tasks, you should switch to more powerful programming
environments (e.g. Visual Studio). As a guideline you can count the lines, beyond a
thousand or two thousand lines it is better to switch to a more powerful language.

Theremino Automation is an interpreted language.

In languages "interpreted", unlike those "compiled", the instructions are not pre
compiled, but are read, character by character, and interpreted during the execution
itself.

The execution of an interpreted language is therefore slower. In our case, the
instructions are on average ten times slower than the same instructions written in
Visual Studio (Csharp, C ++ or VBNET).

Speed is still abundant for simple tasks it is intended for this language. So much so
that we had to add the ability to slow it down further, even thousands of times, to
facilitate the understanding of what is happening.

theremino System - Theremino Automation - February 26, 2025 - Page 6

Run multiple instances of Automation

If you try to run a second instance of Automation from the same file it won't open.
This is a behavior intended to prevent opening two windows by mistake and also to
prevent the options of the two instances from mixing. If necessary, you can force
the opening of a second instance by holding SHIFT during startup.

If you want two or more instances of Automation that can work simultaneously and
each with independent options, just copy the "Theremino_Automation.exe" file with
a different name.

If you prefer you can keep the files "Theremino_Automation.exe" in separate folders
or even all in the same folder.

Load and run programs

Using the LOAD button opens a window that lets you choose the programs to load.

After loading the program you execute it with the RUN button.

To stop the program, press the RUN key (which has become STOP),

You can also stop the program by clicking on the program text.

theremino System - Theremino Automation - February 26, 2025 - Page 7

Edit and save programs

Any changes you make to a program is saved automatically, so there is no need to
remember to save it, before closing the application Automation, or load another
program.

When you re-open the program will be exactly as you left it the last time.

So if you do not want to lose the original, before changing a program you should
save it with a different name, using the SAVE button.

The LOAD and SAVE keys
highlighted in orange indicate
that the program has been
modified and not yet saved.

Pressing SAVE with the right mouse button saves the program quickly.

Pressing LOAD with the right mouse button save the program and then
reload it immediately. With this operation the program is checked from
beginning to end and if it contains errors the bottom line of the application will
show a message.

If the program contains errors then on the bottom row appers the "Select next
error" button, clicking on you can select all the lines with errors.

- - - - -

It is also possible to send all old versions of programs to the system trash, see the
"Recycle bin" option in this page .

If needed, you can also recover the original examples from the original ZIP file
which you downloaded from the theremino site.

theremino System - Theremino Automation - February 26, 2025 - Page 8

http://www.theremino.com/en/downloads/automation

Program execution

During the execution of the program the line in execution is highlighted with a blue
background, as in the following image. In the new versions of Automation (from 7.0
onwards) the last lines executed are also highlighted, as shown on the next page.

The program window behaves in different ways depending on the "Scroll button".

If the scroll is enabled

The window is scrolled vertically to always show the executed line.

If the "Speed" is low (1 to 4) then the highlighted line is also kept in the center
of the screen.

If the scroll is disabled

The lines in execution are highlighted, but the window does not scroll to show
them.

You can then use the mouse wheel, or the vertical scroll bar, to permanently
see the preferred area of the program.

Test also the examples in the folder
"Demo programs\Demo Execution and Scroll"

theremino System - Theremino Automation - February 26, 2025 - Page 9

Executed lines visualization

From version 7.0 onwards, the lines performed are highlighted in red, as shown in
this image.

The blue cursor indicates the line executed instantly and is followed by a red
background color. This color fades slowly until the light gray color of the background
is restored after about one second.

If the program runs slowly, for example at speed 4, then you will see the last lines
executed with different gradations.

If the program is run quickly then you will see blocks of lines color together and
fade together.

These colors are very useful for following the progress of the program. It is
advisable to keep the Scroll button disabled and to manually scroll the program with
the mouse wheel or the window cursor and also to view parts of the program by
clicking the Buttons with the CTRL key pressed as explained at the end of the first
page on "Buttons".

Test also the examples in the folder
"Demo programs\"Demo Hilight Running Lines"

theremino System - Theremino Automation - February 26, 2025 - Page 10

The vertical scrollbar and the Bookmarks

The vertical bar has two different behaviors depending on whether the program is
running or editing.

While the program is running, moving orange bars appear in
the vertical bar.

By moving the cursor over the colored parts of the bar, the
main window shows the parts of the program running.
The orange notches are of a degrading color, the more
intense ones refer to the last rows performed.
The blue dot indicates the program line that is currently
running.

If the program is stopped waiting for something, it may
happen that the orange bands fade completely into the gray
background color and in this case the blue dot is used to
identify where the execution has stopped.

When the program is not running, useful
information appears in the vertical bar to identify
the various parts of the program.
The blue circles on the program and the blue
ovals in the bar indicate the lines with
bookmarks.

The blue circles and ticks indicate the last lines
of the program that have been modified.

The green lines and ticks indicate all
occurrences of the part of the program that has
been selected (in this case the word "Loop").

The bookmarks (blue ovals and circles) are also visible during
program execution and are very useful for marking important
areas and finding them quickly.

theremino System - Theremino Automation - February 26, 2025 - Page 11

Test the values during the execution

On the previous pages we saw that you can stop the automatic scrolling, then with
the mouse wheel you can inspect various parts of the program.

If you want you can also use an external key to pause the application, or you could
place Stop instructions at strategic points, or insert Brakpoints and open the Debug
panel. When the program is running, or the Debug panel is open, you can know
the values of variables and functions by moving the mouse cursor on them.

By positioning the mouse on a variable you
can immediately know its value, as shown in
this image.

Note that the mouse cursor (not very visible) is
positioned between the "n" and "g" of "String1".

Functions can be queried. For example,
the "Now" function responds a value that
changes over time every second.

Also the Rnd function is continuously
recalculated and changes over time.

Positioning the cursor on
"Cos" you get the result of
a complex function.

You can also instantly know the
numerical values of the Slots.

And also the results of numerical
formulas (to define interesting parts
can be enclosed in parentheses)

Experiment with the gli examples in the folder
 "Demo Programs\Demo Fast Debug"

theremino System - Theremino Automation - February 26, 2025 - Page 12

Simple programs to start

About the program for the first time might find the simple examples that are in the
"Simple Programs" folder.

The best way to start is to load these examples, and follow the instructions one at a
time, with the "Single Step" of the "Debug" window button (to open it using the right
mouse button and select Debug).

In the Debug window you are already present some lines that show the value of
variables, of the slot and expressions. However, it is also easy to add new ones.

Pressing repeatedly Single Step, you can see the values change and understand
the progress of the program, and how to run the calculations and assigned values.

Here is an example of a simple program

v1 = 10
v2 = 20
v3 = v1 + v2
v4 = v3 * 12
Slot (1) = Sqrt(v4)
Slot (2) = Rnd * 1000

Note that, after performing the last line, the program starts automatically from the
first line. In case you want to stop it you should add a "Stop" line at the end.

Here is a second example

v1 = Rnd
If v1 > 0.5

Beep
Print ""

else
Print "The v1 value is : " + v1

EndIf

In this example the Rnd statement assigns, to the variable v1, a random value
between 0 and 1. Then emits a sound if it is greater than 0.5, otherwise outputs its
value.

- - - - -

See also other examples who are in the "Simple Programs” folder

theremino System - Theremino Automation - February 26, 2025 - Page 13

Program structure

The simplest programs have a first "initialization" section that ends with a STOP
and then all the procedures that begin with LABEL and that will be executed only
when they are called by a button or other events.

Button 1 Text "Button1"
Button Button1 Color Yellow7

Stop

Label Button1
Beep

Return

The simplest programs have a first "initialization" section that ends with a STOP
and then all the procedures that begin with LABEL and that will be executed only
when they are called by a button or other events.

Button 1 Text "Button1"
Button Button1 Color Yellow7

Label MainLoop
Gosub CheckMotorTemperature
' ---
Wait Seconds 0.1 ' <<< 0.02 sec. or more
' ---

Goto MainLoop

Stop

Label Button1
Beep

Return

Label CheckMotorTemperature
...
...

Return

The MainLoop must contain a Wait Seconds 0.02 instruction (0.02 is the minimum
time to use) otherwise it is executed so fast that it leaves no time for other
operations such as keyboard key or button execution.

In the MainLoop, on the other hand, pauses that are too long (over 100
milliseconds) should not be used and slow procedures should not be called,
otherwise the operations performed by the MainLoop are slowed down.

The events (Button, Keys and others) interrupt the MainLoop and therefore they too
must be executed in the shortest possible time.

theremino System - Theremino Automation - February 26, 2025 - Page 14

Resize the application controls

By resizing the controls, up to 16 or 32 buttons can be displayed vertically, even on
1280 x 768 screens.

In other cases, the buttons could be enlarged horizontally to accommodate more
characters, or you could enlarge or tighten all the controls to obtain a good
readability depending on the resolution of the screen used.

To resize the controls:

Place the cursor anywhere in the middle of the screen.

Then press and hold down the CTRL and SHIFT keys.

And finally, without pressing the mouse buttons, you move the Mouse in the
four directions.

Or you press the four arrows on the keyboard to enlarge or reduce the size of
the controls, vertically or horizontally.

Not being able to use CTRL and SHIFT (for example on a tablet without keyboard),
we recommend to close the Automation app. and change the "ControlsRatio_W"
and "ControlsRatio_H" values in the "Theremino_Automation_INI.txt" file.

To restore the original dimensions of the controls, open the application menu and
click on "Default controls size".

theremino System - Theremino Automation - February 26, 2025 - Page 15

Keywords

The keywords are only about twenty, easy to remember and easy to use.

The bottom bar of the application displays the keywords that can be used.

Instructions can be quickly written by clicking with the mouse on the keywords of
the lower bar.

While writing, the bottom bar shows suggestions to complete the instructions
properly.

Selecting error lines the "Select next error" button appears, then clicking on this
button you select the next error lines.

- - - - -

Not all the errors are identified and explained, we are not Microsoft, we are few and
our time is limited. However, the bottom bar is a good help for beginners, and each
new version works a bit better.

- - - - -

On the following pages the keywords will be explained in detail.

Note that they are listed in order "almost" alphabet (some words are grouped
together because they like each other).

theremino System - Theremino Automation - February 26, 2025 - Page 16

Keywords one by one

Array
Arrays are available starting from Automation version 7.8 and simplify operations
that would have been difficult to implement in previous versions.

They are numeric arrays, with predefined names, from Array1 to Array9.

Apart from these limitations, the potential of these Arrays is remarkable.

Each Array can store up to ten million values.

Very large integers can be used (from -9007199254740991 to
9007199254740991) without loss of precision.

"Double precision" floating point numbers can be used that are even larger
(from -1.7 * 10^308 to +1.7 * 10^308).

Furthermore, the sizing of Arrays is automatic and no errors are ever produced
even if the index is wrong (less than zero or greater than the size of the array).

For example, if you write the following line, Array2 is automatically resized to 1000
places (from 0 to 999) and place 999 is updated with the value 1234.

Array2(999) = 1234

If Array2 previously contained 1000 places or more, then its size is not changed.

During resizing, the value of the elements present in the Array is not changed.

ArrayClear
The size of Arrays can only increase automatically, but if necessary they can be
emptied. For example, to clear Array1 you write: ArrayClear(1)

Or you can initialize it writing values separated with commas or spaces.

Array1 = 111, 222, 333,444,555 or else Array1 = 111, 222 333 444 , 555

In this case is the number of elements that determines the size of the array.

ArrayLength function
This function provides the number of elements in an Array. For example, to print
how many elements Array1 contains you write: Print ArrayLength(1)

ArrayToString function
This function provides a string containing all the array elements separated by
spaces. For example Print ArrayToString(1) could write 111 222 333 444 555

theremino System - Theremino Automation - February 26, 2025 - Page 17

Beep
This statement gives the basic sound established by the operating system.

Beep Frequency Duration
This command produces a pure sinusoidal sound.
- The valid frequencies are from 37 Hz to 32700 Hz
- The valid durations are from 1 millisecond to 2 000 000 000 of milliseconds.
Example that plays a 440 Hz for 1/10 second: Beep 440 100

Beep "String of chars"
Example: Beep "220 500, 440 50, 0 900, 440 50, 0 900, 440 50"
Valid separators are: spaces, commas, minus sign, semicolon and newline.
Notice that pauses are specified setting to zero the frequency value.

You could also read a string from a file like in this example:
 Load s1 "HappyBirthday.txt" and in the next line Beep s1

The Beep is executed asynchronously, to stop the sound before the end of the
duration time, use another Beep command or a Beep 0 0 command.

The system Beep is pure sinusoidal but it produces "ticks" if the duration is not a
multiple of the cycles. It is possible to reduce these "ticks" changing experimentally
the duration values, eventually using the provided example application.

- - - - -

To issue specific sounds, such as a siren or the click of the button, you can use the
LOAD instruction (see how you are using the following pages).

To emit complex and adjustable sounds, you could use other applications (from
theremino collection, for example Audio Generator or Sound Player or else
Theremin Synth, and controlled them by Automation with the SLOT statement.

To control external applications with automation you write the check values in the
slot. For example for Audio Generator you could use the Slot one for the waveform,
the two for the frequency, the three for the amplitude and the four for the Pan
(position in stereo).

See also the examples located in the folder “Demo Programs / Demo Audio”

theremino System - Theremino Automation - February 26, 2025 - Page 18

http://www.theremino.com/downloads/multimedia#synth
http://www.theremino.com/downloads/multimedia#soundplayer
http://www.theremino.com/downloads/multimedia#audiogenerator

Button

Buttons appear on the left side of the window and
you can press them with the left mouse button, or a
finger when using a touch screen.

You can bring up to 120 buttons, on multiple
columns, and determine, for each of them, the text
to display.

If there is a LABEL instruction with the
corresponding text, then press the button, the
execution will continue from the LABEL program
online.

If there is no corresponding LABEL then the line is
marked with an orange color and an error message
appears in the lower bar.

Sometimes it might be useful to have buttons not associated with a function, for
example to use them as labels.

In these cases, you can enclose the text with double quotes to eliminate error
checking.

The jump to LABEL is GOSUB type. So, if you encounter a RETURN, the execution
will resume from where it left off. Otherwise it will continue without returning.

If the text is more than one word then for the corresponding LABEL you can also
use only the first word.

Button - Identify the corresponding labels

Pressing a Button when the program is stopped, the program text scrolls to
highlight the corresponding LABEL.

When the program is started you can press CTRL and then the button (even those
disabled). To use this possibility, the scroll must be disabled (Scroll-enabled button).

theremino System - Theremino Automation - February 26, 2025 - Page 19

Button Text

Normally the word written after Text is used to associate the button with a function,
but it can also be used as a label.

If the text is very long, it will use a smaller font and, if necessary, the text will be
written on several lines. Anyhow, It is recommended to not use too long words or
phrases in order to avoid issues while displaying text on buttons.

You could force the text to display over two rows with a CRLF, like in this example:
Button B1 Text "First row" + CRLF + "Second row"

To make an invisible button write a blank text (only two double quotes). To make it
visible but without text, you write a space between double quotes.

To view all the buttons the window should be high enough, otherwise late down
buttons are not displayed.

Button Disabled / Enabled

To disable a button you write: Button <identifier> Disabled
To enable a button you write: Button <identifier> Enabled

To view all the buttons the window should be high enough, otherwise late down
buttons are not displayed.

Button Slot

The SLOT statement connects the button at a Slot.

So, in this example: Button <identifier> Slot 6, if the Slot value exceeds
500, then the button is pressed.

- - - - - -

See also the examples in the folder
"Demo Programs / BUTTONS"

theremino System - Theremino Automation - February 26, 2025 - Page 20

Button Color

The "Button Color" instruction colors the buttons to make them more meaningful
and visible.

The colors can be chosen by writing their name, or by writing the initial letter and
then clicking on the names that are proposed in the lower bar. But you can also
press the "Color selector" button, and choose them by clicking with the mouse.

If you press the "Color selector" button with the right
mouse button, a different selection panel opens.

theremino System - Theremino Automation - February 26, 2025 - Page 21

Button Color Flashing and RGB

Flashing colors
With the "Button Color Flashing" instruction you can set two colors and make them
flash alternately. With Flashing1, Flashing2 ... up to Flashing9, you can also adjust
the flashing speed from very slow to very fast.

Here is an example of how to set two colors that alternate quickly.

Button B1 Color Flashing7 Yellow9 Red7

RGB colors
Instead of the names of the colors, you can also write the amount of Red, Green
and Blue that compose them.

The syntax can be for example: Button xxx Color R,G,B where instead of R, G and
B you write three numbers from 0 to 255.

Here are some examples:

Button B1 Color 255,0,0 ' This is a pure red

Button B1 Color 255,255,0 ' This is a yellow

Button B1 Color 200,200,200 ' This is a light yellow

ARGB colors
If you add a fourth number to the RGB color then the color becomes ARGB type,
with the Alpha (transparency) value in first place.

The first of the four values is transparency and ranges from 0 (completely
transparent) to 255 (completely opaque) with everything in between.

Here are some examples:

Button B1 Color 20, 255, 0, 0 ' This is a very light red

Button B1 Color 10, 255, 255, 0 ' This is a very light yellow

- - - -

There are examples for Buttons with Images and Flashing, RGB and ARGB colors
in the files "Button IMAGES.txt", "Buttons Flashing.txt" and "Button RGB

COLORS.txt" found in the "\Demo Programs\BUTTONS" folder

theremino System - Theremino Automation - February 26, 2025 - Page 22

Button used as Labels

The "Buttons" can also be used to display numerical values or text messages.

The text of the buttons is updated quickly, so you can modify it at various points in
the program to show the evolution of numerical values or to change the text when
the button is pressed.

It is important to note that the buttons can also be used to call program functions.
For this purpose, it is enough that the first word (before the first space) is equal to
the word of the Label.

If a Button is not used to call a Label, double quotation marks should be used to
prevent the line from being treated as an error.

For example, pressing the first two buttons of the image on this page will call the
functions starting with Label Test1 and Label Test2, even if the following text (= 26)
is modified.

You can also show colorful and flashing messages, to highlight them.

See also the examples in the folder
"Demo Programs / BUTTONS"

theremino System - Theremino Automation - February 26, 2025 - Page 23

Button Text and Identifiers

When using Buttons as labels with a text that can be varied, you must declare the
button by an identifier (a text without spaces or quotes) and later change its text
with a string.

This is also useful to identify two different buttons sharing the same initial word,
otherwise the program would confuse them while choosing which to execute.

Some examples:

Button 1 Label Function1
Button Function1 Text “Run function 1”

Button 2 Label Function2
Button Function2 Text “ Run function 2”
Button Function2 Color White
Button Function2 Disabled

Label Function1
 ...
Return

Label Function2
 …
Return

In this example the first row assigns the identifier Function1 to button 1.

This identifier is then used instead of the button number in order to change its text
with a string (as in the second row in the example) or to call a corresponding label
that execute a part of the program. By this way there is no danger of ambiguity,
even if the text will be changed after.

Even a Button declared by using a string (text closed by double quotation) can have
the same role, but can be a source of ambiguity in some cases.

The most important rule to remember is that a Button will be identified in the entire
program through its identifier or the first word of a string that are used during the
first declaration.

If you write Button nn Text xxx the word Text will be automatically substituted with
Label when the program is reloaded.

theremino System - Theremino Automation - February 26, 2025 - Page 24

Button - Using formula instead of numbers

Normally you write a number for each button and in this way you can move them
easily without changing anything else in the program.

In some cases it might be useful to write a formula in place of the number and
enclose everything in a FOR loop as seen in the following image.

Note that in this case the formulas must not contain spaces.
But this exception only applies to indicating Button numbers.
Normally formulas can also contain spaces between terms.

- - - - - -

See also the example:
"Demo Programs \ BUTTONS \ ButtonsWithFormula.txt"

theremino System - Theremino Automation - February 26, 2025 - Page 25

Button that change state

The following example creates a button that turns ON and OFF a LED.

Each time the button is pressed the button text and color is changed, and the Slot 1
value is modified to control the LED luminosity.

' ------------------------------------ INITIALIZATIONS
Variable Numeric LED = 1
Button 1 Text LedToggle
Gosub LedOFF
Stop

' ------------------------------------ FUNCTIONS
Label LedToggle

If Slot(LED) = 0
Gosub LedON

Else
Gosub LedOFF

EndIf
Return

Label LedON
Slot LED = 1000
Button LedToggle Text "LED OFF"
Button LedToggle Color PowderBlue

Return

Label LedOFF
Slot LED = 0
Button LedToggle Text "LED ON"
Button LedToggle Color Cyan

Return

With this structure you can also call the three functions from various parts of the
program (with Gosub LedToggle, Gosub LedON and Gosub LedOFF) and in all
cases the text and the colors of the Button are updated correctly.

If desired, it is also possible to expand this mechanism to a greater number of
states. In this case, the "Toggle" function will be called "Change" and inside it, some
"Case" statements will be used to pass from one state to the next.

- - - - -

Experiment with the examples "ButtonBistable" and "ButtonMultipleStates"
in the folder "Demo Programs \ Demo COM Port"

theremino System - Theremino Automation - February 26, 2025 - Page 26

Buttons with images

To assign images to buttons, you write, for
example:

Button 1 Label Button1
Button Button1 Text "123 abc"
Button Button1 Image Image1.jpg

In this case the image is a JPG but it could
also be a PNG, ICO, GIF, BMP, or even other
formats that can be recognized by the
operating system.

The images must be in the "Media" folder
that you find near the "Automation.exe" file.

If they are in a sub-folder you must add the
missing part of the path.

You can also use rectangular images with the left part white and position the text on
the left. Or images with the right part white and use repeated spaces to push the
text to the right.

When you disable the buttons the images are
automatically transformed into gray-scale images.

This helps to identify the enabled buttons and
distinguish them better from the disabled ones.

When setting images you can also remove the black
border by writing "Image0":

Button Button1 Image0 Image1.jpg

Or you can make it thicker by writing Image2,
Image3, Image4 o Image5.

And finally you can also stretch the image to the
edges by writing Image0S (zero means no border
and S means "Stretched")

See the example “Demo Programs \ BUTTONS \ Button IMAGES.txt”

theremino System - Theremino Automation - February 26, 2025 - Page 27

COM (serial port) - Commands

COM Open 1 9600 or else COM Open COM1 9600
These command opens the serial port "COM1" at the speed of 9600 baud. Instead
of 9600, any speed from 1 baud up to many mega baud can be used, up to
maximum for the connected hardware.

To find out the names of valid ports, use the COM_Portnames function explained
on the next page.

To find out if the port is actually open, use the COM_Status function explained on
the next page.

COM Close
This command closes the serial port. You can use it even if the door is not open, to
make sure it is closed.

COM WriteString s1
COM WriteLine s1
These two commands send the string s1 to the serial port.
The former only sends the string, while the latter adds a final CRLF.

COM WriteStringHEX s1 for exampe "AA AA FF 80 00"
COM WriteStringDEC s1 for example "170 170 255 128 0"
These two commands send many bytes specified with Hex or Decimal numbers.
The numbers must be separated by spaces (not comma or other separators) and
the only valid chars are "0" to "9" and "A" to "F".

COM DiscardOutBuffer
COM DiscardInBuffer
These commands clear the serial port's output and input buffers.
Emptying the buffers can be useful in some cases, to clear the past history when
starting a new communication session.

COM EnableDTR
COM EnableRTS
COM DisableDTR
COM DisableRTS
These controls raise and lower the DTR and RTS outputs.
Some devices only respond if these two outputs are in a certain state.

- - - - -

See also the examples in the folder
"Demo Programs \ Demo COM Port"

theremino System - Theremino Automation - February 26, 2025 - Page 28

COM (serial port) - Functions

S1 = COM_Status

In this example the variable S1 is "OPENED" if the "Open" command could open
the port, or "CLOSED", if the port has not been opened.

The reasons why you are unable to open the port, could be that the required port
number does not exist on the device, or that it is currently used by another
application.

S1 = COM_Portnames

In this example the variable S1 is filled with the names of the usable ports
separated by spaces.

Here is an example of a string provided by this function "COM1 COM12 COM13"

Interestingly, placing the cursor on the line S1 = COM_Portnames the ports are
displayed, even without running the program. This is a convenient behavior that can
be used for all functions that set a variable.

To count the number of ports inside this string and to choose one of the names, you
can use the GetSeparatedStringCount and GetSeparatedString functions which are
explained in this page.

COM_Dsr

COM_Cts

These functions read the DSR and CTS signals status. The result is Boolean so
you can check them directly with If COM_Dsr or with If COM_Dsr = True or
with If COM_Dsr = False

Remember that assigning boolean values to numerical variables then you must test
them for ZERO (0 = False) or for NOT ZERO (-1 = True).

- - - - - -

See also the examples in the folder
"Demo Programs \ Demo COM Port"

theremino System - Theremino Automation - February 26, 2025 - Page 29

COM (serial port) - Receive buffer

S1 = COM_Received

This example read a line of characters arriving from the serial port.

Individual characters are not received, but only complete lines. Reception occurs
only when the transmitting device sends an end-of-line character.

The end of the line can be specified by any of the following character combinations:
CR (13), LF (10), CRLF (13-10), or LFCR (10-13).

The received string does not contain the end of line characters.

S1 = COM_ReceiveUntil(string)

This example reads a number of characters arriving from the serial port.

The end of the line can be specified by the termination characters, which are
supplied in the "string" parameter.

A single character or multiple characters can be used as the termination.

The received string also contains the termination characters.

You can use the Chr () function to specify non-printable terminator characters (less
than 32 or greater than 127).

For example, to specify the characters zero and 255 as the terminator, you could
write: Chr (0) + Chr (255)

S1 = COM_ReceiveNChars(nn)

This example reads a number of characters arriving from the serial port.

The number of characters to be received is specified by the numeric value "nn"

If the serial buffer contains no characters or if it contains fewer characters than
required then this function returns an empty string.

- - - - -

The received character string can be scanned with the Mid function and converted
in various ways, for example, the following lines convert the characters to
hexadecimal values and print: 01 03 50 80 BF FF

s1 = Chr(1) + Chr(3) + Chr(80)+ Chr(128) + Chr(191) + Chr(255)
For v1 = 1 To Len(s1)

s2 = s2 + Right("0" + Hex(Asc(Mid(s1, v1))), 2) + " "
Next
Print s2

theremino System - Theremino Automation - February 26, 2025 - Page 30

Controls

Probably in future versions we will add other controls, but currently there is only a
commend to set the mouse cursor position and a TextBox, that can be used to
display many lines of text with the Print command.

The "Controls" statements are:

Controls SetCursorPos <X Y>

Controls SetBackColor <color>

Controls OpenTextBox

Controls CloseTextBox

Controls ClearTextBox

In the following sections they are individually explained.

Controls - SetCursorPos <X Y>

This instruction sets the screen mouse cursor position.

The X and Y numerical values are in pixels, therefore, on the lower left the two
values are zero, while on the upper right the two values depend on the number of
pixels on the screen.

In case of multiple screens the pixels start from the bottom left of the first screen to
the top right of the last screen and if the main screen is not the first then the
numbers that identify the pixels can also be negative.

You can also read the mouse cursor position
with the function MouseXP and MouseYP explained in this page.

See also the examples in the folder
"Demo Programs \ Demo Mouse"

Controls - SetBackColor <color>

This instruction sets the buttons box back-color with a selected color or with a color
specified by RGB values.

You can also choose the color with the "Color selector" button and if you press it
with the right mouse button a different selection panel opens.

theremino System - Theremino Automation - February 26, 2025 - Page 31

Controls - TextBox

The following commands are used to control the TextBox:

Controls OpenTextBox

This command opens the TextBox and all subsequent "Print" will be displayed in the
TextBox, instead of in the lower status line.

When the TextBox is open, you can resize it by moving the horizontal gray bar that
divides it from the program area with the left mouse button (see the image on the
next page).

Controls CloseTextBox

This command closes the TextBox and all subsequent "Print" will be displayed
again in the lower status line.

Controls ClearTextBox

This command deletes all the text in the TextBox.

You can also delete the text by sending a CLS or a Chr (12) with the Print
statement, as in the following two examples:

Print CLS

Print Chr(12)

The length of the TextBox is limited to ten thousand characters to avoid slowdowns.
When this size is exceeded, the characters are automatically deleted from the top

of the TextBox and replaced with a warning line.

- - - - -

See also the examples in the folder
"Demo Programs \ Demo TextBox"

theremino System - Theremino Automation - February 26, 2025 - Page 32

Controls - Close and resize the TextBox

The TextBox opens executing a Controls OpenTextBox statement. To close it
automatically when the program stops, you could write the statement Controls
CloseTextBox in the closing event, as you see in the following example:

Label EventStop
Controls CloseTextBox

End

Normally you control the TextBox by means of program
instructions, but in some cases it might be useful to control
it manually.

Pressing the right mouse button on the left side of the
application opens a contextual menu that allows you to
Open, Close and Clear the TextBox even when the
program is stopped.

To resize the TextBox (seen in the lower half of this image), move the mouse with
the horizontal gray bar that divides it from the program area.

theremino System - Theremino Automation - February 26, 2025 - Page 33

For - Next

These two statements repeatedly execute the lines between FOR and NEXT.

The FOR instruction, which must be before the NEXT, is composed of a numeric
variable (counter), an initial numeric value, and a final numeric value.

For counter = initial To Final

Next

When the FOR is executed arriving from the previous instructions, the "counter"
variable is set with the "initial" value.

After having executed the instructions that are on the lines following the FOR, the
program comes to NEXT. At this point, if the variable "counter" is different from
the value"final", then the program execution returns to the FOR.

When repeating the FOR the variable "counter" is incremented or decremented
by one, depending on whether the value "final" is greater than or less than it. The
increment direction is automatic. To specify the direction you add the word "Step",
explained in the next page.

If for some reason the variable "counter" exceeds the "final" value (for example
because you used not integer values, or for rounding errors), then it would be set to
the value"final". In this way it is ensured that the last loop is always executed with
the "final" value.

- - - - - -

The "initial" and "final" values may be numeric variables, or numeric constant
values, or even expressions, as in the following examples:

For var1 = var2 To var3
For var1 = 7 To 3
For var1 = var2 + 7 To "var3 - 4 + int (rnd * 6)"

Important to note that the expressions must not contain spaces,
otherwise the line turns red and the FOR statement is not executed.

You can write complex expressions, which also contain spaces and functions,
enclosing them in quotation marks, as shown in the right part of the last example.

theremino System - Theremino Automation - February 26, 2025 - Page 34

For - Next with Step

Normally for each FOR and NEXT cycle, the control variable is increased or
decreased by one unit.

By adding the word Step and a numerical expression it is possible to impose an
increase of a fraction of a unit, or even a larger increment, as in the following
examples..

For v1 = 1 To 9 Step 0.1

Next

For v1 = 0 To 32000 Step 1000

Next

In these examples we used v1 as control variable, and numbers as initial and final
values, but of course we can also use user-defined variables and complex
expressions.

- - - - - -

Using Step the direction of the increment is no longer automatic but explicitly
specified, as in the following two examples.

For v1 = 9 To 1 Step -0.1

Next

For v1 = 32000 To 0 Step 1000

Next

If you specify start and end values with variables, the For may increment in the
unexpected direction. In the example below which produces three short sounds, we
would expect that changing "abc" to "" would cause the For not to be executed,
but unexpectedly it plays the values one and zero and then emit two sounds.

s1 = "abc"
For v1 = 1 To Len(s1)
 Beep 1000 500
Next

In these cases it is good to specify the Step and establish the increment direction.

theremino System - Theremino Automation - February 26, 2025 - Page 35

For - Next instead of While

In other languages, many types of loops are used, for example While-Wend, Do-
While, Do-Loop, Loop-Until, Loop-While, etc.

These multiple ways of writing loops all do exactly the same thing, so we'll only use
one, the For-Next.

The For-Next is undoubtedly the most versatile and complete method to build a
repetition cycle and can also produce infinite cycles if you set as final value the
number 9e99 (or "Infinity"), as in the following examples:

For v1 = 1 To 9e99

Next

To create infinite loops you can use the "Infinity" function instead of 9e99.
To terminate the loop, the control variable can be set to the value "Infinity", or the
word "Exit" could be used, as explained on the following pages.

For v1 = 1 To Infinity
 If Slot(1) > 500
 v1 = Infinity
 EndIf
Next

The For-Next can also be nested and you can easily exit even the innermost For-
Next cycles with the Exit statement, as in the following example:

For v8 = 1 To 10
 For v7 = 1 To 30
 For v6 = 1 To 50

 If Slot(1) > 500
 Exit 3
 EndIf
 Next
 Next
Next

The next two pages explain how to use the Exit statement

theremino System - Theremino Automation - February 26, 2025 - Page 36

Exit

This instruction must be placed in a For-Next loop and causes the execution of the
program to jump after the Next instruction.

Here is an example of premature exit from a For-Next

For v1 = 1 To 1000
If v1 >= 10

Exit
EndIf

Next

Without the Exit instruction this cycle would repeat itself a thousand times, but the
If instruction ends the cycle when v1 reaches 10.

In other cases, instead of checking v1, you could exit when a key is pressed, for
example "ESC", or if too much time has passed.

- - - - -

This example shows that For-Next loops can also be nested.

For v1 = 0 To 1000
If v1 >= 10

Exit
EndIf
For v2 = 0 To 1000

If v2 >= 20
Exit

EndIf
Next

Next

In the case of nested For cycles, each Exit instruction acts on the innermost cycle.

So in this example:

The first Exit refers to the For v1 and therefore exits the final Next.

The second Exit refers to the For v2 and so only exits from its Next.

- - - - -

The Exit statement only takes effect if inserted into a For-Next loop. If it is
positioned outside, the statement is highlighted in orange and is not performed.

See also the examples in the folder: "Demo Programs \ Demo FOR NEXT"

theremino System - Theremino Automation - February 26, 2025 - Page 37

Exit "n"

This instruction allows you to exit multiple For-Next, nested one inside the other.

For v5 = 0 To 9
For v6 = 0 To 9

Exit 2
Next

Next

For v5 = 1 To 9
For v6 = 1 To 9

For v7 = 1 To 9
For v8 = 1 To 9

Exit 4
Next

Next
Next

Next

If you specify a number greater than the For-Next maximum nesting level, then the
Exit statement is not executed and you are warned of the error with a message as
in the following image:

theremino System - Theremino Automation - February 26, 2025 - Page 38

Goto - Gosub - Return

The GOTO and GOSUB statements blasting the execution of the program to the
mark with a LABEL (label) and with an identifying text, composed of alphanumeric
characters.

• So the instruction Goto xxx jumps to the line indicated by Label xxx.

• And the instruction Gosub yyy jumps to the line indicated by Label yyy.

If there is no corresponding label, then the GOTO and GOSUB statements have no
effect and the execution continues as if there were.

The identifier can also be composed of several words, and these words can also be
enclosed in double quotes (for clarity), for example, you could write Label xxx
yyy zzz, or Label "xxx yyy zzz".

Difference between Goto and Gosub

To put it in simple words, the GOTO is like a one-way trip, while the GOSUB also
provides for the return.

So if you use a GOTO, the program jumps and continues from that position. While if
you use a GOSUB, the program jumps, performs some instructions and, when it
encounters a RETURN statement, returns to the statement after the GOSUB. In
this case the Stop instruction.

Gosub Identifier1
Stop

Label Identifier1
...
Return

See also the examples in the folder
“Demo Programs \ GOSUB and RETURN”

Eliminate Gosubs and send parameters to Functions

Starting from Automation version 7.x, you can also omit all the Gosubs
and send parameters to function too.

SEE PAGES : Calling functions and Function parameters

theremino System - Theremino Automation - February 26, 2025 - Page 39

If - Else - Endif

The "IF" and "ENDIF" instructions enclose an area to be executed only if the
condition is true.

Each "IF" must end its "ENDIF" otherwise does not run and the execution continues
as if there was not.

If Slot (1)> 500
Instructions to execute
only if the value of the slots 1
is greater than 500

endif

The instructions "IF", "ELSE" and "ENDIF" contain two zones, one to run if the
condition is true, and the other to run if the condition is false.

If Slot (1)> 500
Instructions to execute
only if the value of the slots 1
is greater than 500

else
Instructions to execute
if it is less or equal than 500

endif

The IF statements (and all the other Automation structures) can be "nested" that is
placed one inside the other. For example in the following example the BEEP is
performed if all three slots are larger than 500.

If Slot (1)> 500
If Slot (2)> 500

If Slot (3)> 500
Beep

EndIf
EndIf

EndIf

But the same result you could get even with AND instructions

If Slot (1)> 500 And Slot (2)> 500 And Slot (3)> 500
Beep

EndIf
- - - - - -

See also the examples in the folder "Demo IF ELSE ENDIF" folder

theremino System - Theremino Automation - February 26, 2025 - Page 40

Key

With the keyword "Key" is obtained by the execution of program parts, pressing
keys on the keyboard.

The usable keys are as follows:
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
V, W, X, Y, Z, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, Num0, Num1,
Num2, Num3, Num4, Num5, Num6, Num7, Num8, Num9, Left, Right, Up, Down,
Space, Esc, PageUp, PageDown, Home, End, Canc, Back, Enter, Ins, Shift, Ctrl,
Alt, Print, Scroll, Pause

The KEY statements usually are written at the beginning of the program and can be
of two types GOTO or GOSUB. With GOTO The jump and never comes back. With
GOSUB the program jumps back when encounters a RETURN.

Key 1 Goto Identifier1
Key 2 Gosub Identifier1
Stop

Label Identifier1
...
Stop

Starting from Automation version 7.x, you can also omit all the Gosub word.

When you press a key on the keyboard, the program is stopped, whatever he was
doing, and jumps to the corresponding LABEL.

If you have set a KEY with RETURN, then the program is interrupted, jumps to
executing lines after the LABEL, then meets the RETURN, and go back to doing
what he was doing when he was interrupted.

To avoid accidentally trigger it while you write something, the Key do not work when
you browse pages on the web, or when you are writing in an input box, or when you
are writing in another application. Or in all cases when the application Automation is
not selected, or is invisible, or is minimized.

If you want the Key statement to act always, you can use the "Option GlobalKeys
Enabled" statement.

- - - - - -

See also the examples in the "Demo Keys" and "Demo Option" folders

theremino System - Theremino Automation - February 26, 2025 - Page 41

Label

The LABEL instruction (label) is a marker, used to give a unique name to a program
line.

The label may consist of any number of alphanumeric characters, but not spaces or
double quotes, as in the following examples:

Label 1

Label 123

Start Label

Label Stop

Label MyFunction

Label My_function

The line labeled with the LABEL instruction, may be the target of the jump
instructions: GOTO, GOSUB, and KEY BUTTON, as in the following examples:

GoTo MyFunction

GoSub MyFunction

Key 1 GoTo MyFunction

Key 1 GoSub MyFunction

Button 1 Text MyFunction

See also the examples in folders

"Demo GOSUB and RETURN" and "Demo Keys"

- - - - - -

Eliminate Gosubs and send parameters to Functions

Starting from Automation version 7.x, you can also omit all the Gosubs
and send parameters to function too.

SEE PAGES : Calling functions and Function parameters

theremino System - Theremino Automation - February 26, 2025 - Page 42

Label EventStop

The instruction Label EventStop is called automatically each time the program is
stopped (either manually, by pressing the Stop button, or with the End instruction).

This Label is a special event, but you can also call it with Gosub EventStop, Button
EventStop or Key EventStop, as you would any other Label. In this case the
content of the Label is executed and then the program stops because the
EventStop Label always ends with End.

This event allows you to complete important actions every time the program stops,
for example cutting power to the motors, but you can use it usefully in many ways.

In the following example, every time the program is started, the window is
minimized with the Window MinSize command. Then, when the program is
stopped, the Label EventStop is called which returns the window to its normal size,
with the Window Sizable command.

See the examples found in the "Demo Programs \ Demo EventStop" folder

theremino System - Theremino Automation - February 26, 2025 - Page 43

Label EventTimer

CAUTION

The Label EventTimer is executed by a timer, and randomly interrupts the program
in many different places. Unwanted interactions can therefore occur, which are
difficult to understand and correct.

Also, if running the EventTimer takes too long, some parts of the main program may
be significantly slowed down.

So use this instruction very carefully and carefully checking that it does not produce
side effects on the rest of the program.

- - - - -

INTERACTIONS WITH DEBUG

The constant interruptions make it difficult to follow the progress of the program. So
we recommend commenting the entire function, from EventTimer to Return, when
using Debug functions.

- - - - -

The Label EventTimer is automatically called about ten times per second.

The instructions found between the EventTimer and its final Return are executed at
maximum speed, regardless of the speed set with the Speed slider. This minimizes
side effects on the rest of the program.

However, it is recommended to observe the following rules for everything between
the Label EventTimer and its final Return:

Minimize the number of instructions.

Possibly do not use slow instructions such as Print or Button Text.

Never use very slow instructions such as Load.

Do not use any type of waiting (Wait Seconds / Wait Button ...).

Do not call other labels (especially if they contain a lot of code).

Set Speed at maximum (9) to speed up execution of the main program. This
prevents execution from slowing down too much or stopping due to
continuous interruptions.

theremino System - Theremino Automation - February 26, 2025 - Page 44

Label Event_DroppedFile

The Label Event_DroppedFile is used to receive the name and content of a file
that is dragged and dropped onto the command pane with the mouse, with an
operation called Drag-And-Drop.

For this event to work, you must have defined the variables to read,
DroppedFilename e DroppedString.

If you do not define at least one of these two variables, then the line that must
receive the Label Event_DroppedFile turns red and gives an error.

If you want to read both variables, you define both of them, otherwise you just
define the one you want to use.

After dragging the file, the Label Event_DroppedFile is called and the two variables
contain the following text strings:

DroppedFilename contains the full path to the file plus the name and also the
extension.

DroppedString contains the full text of the file. If the text is not readable, you
should find a leading word that explains that the file is of a special type, for
example a PNG or JPG image.

- - - - -

Here is a short example of a program that receives and prints the file name and its
contents.

String DroppedFilename
String DroppedString
Stop

Label Event_DroppedFile
Print DroppedFilename + CRLF + DroppedString

Return

You can try this example by loading it from the Demo Programs \ Files folder.

Then just RUN the example and drag any file
from a Windows folder to the "Controls" area.

theremino System - Theremino Automation - February 26, 2025 - Page 45

Label Event_ExternalCommands

The Label Event_ ExternalCommands is used to receive commands from the
Theremino_COBOT application, but could also receive commands from any other
application capable of writing in the "Text Slots".

When an external application writes a string containing a command in the Slot_
ExternalCommands the event is raised by calling this Label.

The Automation program is interrupted, whatever it was doing, and the instructions
after the Label are executed until the Return.

The command text is read with the "CommandText" function and then decoded with
a "Select" structure, as in the following example:

Variable Numeric Slot_ExternalCommands = 53
Stop

Label Event_ExternalCommands
Select CommandText

Case "Beep"
ExecBeep
ClearCommand

 '
Case "Beep multiple"

ClearCommand
ExecBeepMultiple

'
CaseElse

Print "Unrecognized command: " + CommandText
ClearCommand

EndSelect
Return

Label ExecBeep
Beep 440 300
Wait Seconds 0.5

Return

Label ExecBeepMultiple
For v1 = 1 To 3

Beep 880 400
Wait Seconds 0.5

Next
Return

Label ClearCommand
SlotText(Slot_ExternalCommands) = ""

Return

Notice that a ClearCommand statement was added in the Case "Beep multiple"
before the command execution. This statement tells the COBOT application to
proceed immediately, without waiting for the command execution to finish.

On the next page there is an example of a sequence that sends these commands.

theremino System - Theremino Automation - February 26, 2025 - Page 46

Commands from COBOT to Automation
This chapter explains how to send commands from the COBOT application to the
Automation application.

The following example is a sequence that moves three motors and between one
movement and the next sends the commands "Beep" and "Beep multiple".

MoveTolerance 1
MoveTime 0.5
MoveTo +00137.000 +00300.000 +00022.000
SendCommand Beep
MoveTo +00153.000 +00303.000 +00025.000
SendCommand Beep multiple

The file that contains this sequence is run by the Theremino_COBOT application
and must be in its "Sequences" folder.

The commands sent to the Automation application can be any text string, even
separated by spaces, and are decoded regardless of case.

Any multiple TAB or Space characters are transformed into single spaces by the
COBOT application before sending them, and the leading and trailing TABs and
spaces are deleted.

The user himself can write his commands, remembering that:
- The commands must be written in the sequence of the COBOT application.
- Instructions for decoding them in Automation's ExternalCommands event.

In the Cobot application, the text slots to be used for the commands must be set.
Open the options panel (with the gear at the top right) and locate the "Slots for Text-
Commands" section located at the bottom.

The text Slots that are set in the Cobot application must be the same that are
declared in the Automation variables with the names: Slot_CommandsToCobot,
Slot_CobotResponses e Slot_ExternalCommands

See also the examples in the folder
"Demo Programs \ SlotText Commands"

- - - - - -

In the next page we will see that commands can also be sent from the Automation
application to the Cobot application.

theremino System - Theremino Automation - February 26, 2025 - Page 47

Commands from Automation to COBOT
A slightly different method is used to send commands to the Cobot application. You
set the Slot_CommandsToCobot and Slot_CobotResponses variables, and then use
them with the commands to write and read in the text Slots.

Commands from Automation to COBOT (text strings in the Slot_CommandsToCobot)

ExitFromEdit (exit from editing state)
StartExecution (auto-exit from editing state)
StopExecution (auto-exit from editing state)
GotoHome (auto-exit from editing state)
GotoCenter (auto-exit from editing state)
EnableRepeat
DisableRepeat
SelectLine nnn
ExecuteSelectedLine
EnableCollaborative
DisableCollaborative
AddNewPosition
SetHomePosition
SetCenterPosition
SetHoldingTorque nnn
SetSafeTorqueLimit nnn
SetTorque nnn
SetAcceleration nnn
SetSpeed nnn
LoadSequence SeqName.txt (the file name "xxxxx.seq" must not contain spaces)

Responses from Cobot to Automation (text strings in the Slot_ResponsesFromCobot)

Ready
Execution running at line nnn
Motors disconnected
Human detected - Speed reduced
Human too near - Execution stopped
Too much torque - Execution stopped
Motors disconnected - Execution stopped

See the example "Commands_to_COBOT.txt" in the folder
"Demo Programs \ SlotText Commands"

theremino System - Theremino Automation - February 26, 2025 - Page 48

External commands to Automation Buttons

You can also execute Automation Buttons with commands from external
applications.

This method is easier to use than the method explained in the previous pages
which expects the Label Event_ExternalCommands

You simply send the text that appears on a button (or its identifier) and the button
executes as if you pressed it with the mouse.

- - - - -

To use this method you need to set the command slot usin, for example, a line like
this: Variable Numeric Slot_ExternalCommands = 1

But you shouldn't set the Label Event_ExternalCommands

- - - - -

OPERATION

All the commands that will be sent in the Slot_ExternalCommands will be
compared, case insensitive, with the text present on the buttons and also with the
identifiers that were used in the first creation of the buttons, and if they match then
the button is pressed.

We also recommend using single spaces between words, in the text that appears
on the Buttons to be executed and also to use identifiers without spaces, because
some applications such as "VoiceCommands" always send single spaces.

- - - - -

IMPORTANT - To direct external commands to the Buttons
You must NOT set the Label Event_ExternalCommands

If you set the Label Event_ExternalCommands
then the execution of external commands must be performed inside it

and the Buttons will no longer be executed.

Try the SlotText-ExternalCommands_TO-BUTTONS.txt example
sending him the commands on SlotText 1 with Theremino_Terminal

or with a second copy of Automation.

theremino System - Theremino Automation - February 26, 2025 - Page 49

Load (Applications)

In some cases it may be useful to start an application as many times as you run
Automation. Often this application is Theremino_HAL or SlotViewer, or even both.

If the application is already active it is not launched a second time.

The Load instruction stops the program execution until the application is fully
started.

The applications "xxxx.exe" file should be in the folder "Apps". You could also give
the full path, but should be in a fixed place in the system (not in the Automation
folder), or by moving the Load Automation stop working.

If the application to launch is located in a sub-folder, you can add the part of the
path you need, such as:
Load Apps\Theremino_HAL.exe

If there are spaces in the path, you must add quotes
Load "Apps\Theremino_HAL.exe"

If the application to launch is in a parent folder, you can go up a folder with the
colon. Eg:
Load ".. \ Theremino_HAL\Theremino_HAL.exe"

- - - - -

If you specify only the file name (for example "Theremino_SlotViewer.exe")
then the application is searched in the folder "Apps"

and also in all its sub-folders.

theremino System - Theremino Automation - February 26, 2025 - Page 50

Load OpenApps

This instruction starts all applications starting with "Theremino_" and ending with
".exe".

Applications are launched if they are in the "Apps" folder and in all its sub-folders.

Load CloseApps

After having opened many applications, you may need to close them. The Load
CloseApps function closes all the applications that was opened with "Load".

NOTICE
When closing Automation by the red cross

all the opened apps are automatically closed
(unless you are working on the source in "Debug" mode)

Load CloseAll

This command closes all the apps, as the precedent command, but then closes
Theremino Automation too.

SUGGESTION
To avoid closing Automation

hold down CTRL while executing the "Load CloseAll" statement.

NOTICE
When closing Automation by the red cross

all the opened apps are automatically closed
(unless you are working on the source in "Debug" mode)

theremino System - Theremino Automation - February 26, 2025 - Page 51

Load CloseApps file-name

To close a single application after the "Load CloseApps" statement you also write
the filename, as in this example:
Load CloseApps C:\Theremino_HAL\Theremino_HAL.exe

If you do not specify the complete path then the path is rebuilt starting from the
position where the executable "Theremino_Automation.exe" is located, you can
then write its name as in the following line and if the file is identified then its process
will be closed.
Load CloseApps Theremino_HAL\Theremino_HAL.exe

Load CloseApps process-name

To close an application you could also write the name of the "process" which is the
name of the executable file of the application not preceded by the path. You write
the name with or without the final exe extension, as in the following examples:
Load CloseApps Theremino_Editor.exe
Load CloseApps Theremino_Editor

Closing applications using the name of the process can be useful when you do not
know where the executable resides, such as in the case of Theremino_Editor which
is never started directly, but is started by the Windows system when you open a file
that has been associated with him.

The process name must have exact uppercase and lowercase letters.

Load CloseApps Windows

WARNING
This command turns off your PC !

This example shuts down the Windows operating system:
Load CloseApps Windows

theremino System - Theremino Automation - February 26, 2025 - Page 52

Load Slots / Save Slots

The Load Slots instruction loads all the slot values (from slot 0 to slot 999), by
reading them from the "_Slots.txt" file (numeric Slots only, not the SlotText).

The "_Slots.txt" file contains the values of all the Slots, which had been previously
saved with the instruction Save Slots.

With Load Slots n1 n2 you load only from Slot n1 to Slot n2, included.

Instead of n1 and n2 you can also write variables, or formulas, also complex. Note
that the formulas of Load Slots instructions must not contain spaces, or give an
error. To use spaces in these formulas you might enclose them with double quotes.
Here are some examples:

Load Slots 20 30 slots from 20 to 30 inclusive
Load Slots v1 v2 slots from 10 to 20 inclusive
Load Slots 2*3 2+v2 slots from 6 to 22 inclusive
Load Slots 2 Math_PI*4 slots from 2 to 13 inclusive

In the examples it is assumed that v1 is equal to 10, and v2 which is equal to 20.

In the last example the PI (Math_PI function with value 3.14159...), is multiplied by
4, and then rounded to the nearest integer (13).

Load Vars / Save Vars

With the Save Vars statement you save the variables used in the "_Vars.txt" file.

With Load Vars you reload the variables that are used and present in the file.

Using Save Vars in the event EventStop and Load Vars in the initial part of
the program, you can restore the total state of the application that will restart
exactly as it was closed.

WARNING

When using Load Vars you need to be careful
where you initialize your variables and how you initialize them.

Read the next page that explains how to use Load Vars

theremino System - Theremino Automation - February 26, 2025 - Page 53

Load Vars - Beware of Initializations

Executing the Load Vars command could overwrite your initializations, creating
unexpected, strange, and counterintuitive behavior.

To avoid problems, it is best to place the Load Vars statement in the first lines of the
application and write all the initializations immediately after.

Initializations that must not be modified must be in the initial area, after Load Vars
and before Stop.

' -------------------------------------
Load Vars
' ------------------------------------- Not affected by Load Vars
Array1 = 0.5,1,2,5,10,20,50,100,200
Array2 = 0,12,20,50,100,200,500,1000
InitLog
Numeric SoundFrequency = 1000
Numeric SoundMillisec = 10
' ------------------------------------- LOAD APPS
Load Theremino_SlotViewer.exe
' ------------------------------------- BUTTONS
Button 1 Label TestOnOff
Button 2 Label TestFrequency
' ------------------------------------- START ALL
OpenComPort
UpdateButtons
Loop
Stop

Label InitLog
 String LogFile = ".\LOGS\LOG_" + Format(Now, "yyyy_MM_dd_HH_mm") + ".txt"
 Numeric LogOldTime = -Infinity
Return

In this example, the areas highlighted in yellow are the initializations that should not
be covered by Load Vars.

Note that the initializations placed in the InitLog function are also valid since the
InitLog call is in the valid area.

This way, if necessary, you can change the initializations and they will not be
covered by what is reloaded by Load Vars.

- - - - - -

See also the examples in the "Demo Programs\Vars\" folder
The "SaveVars_Test.txt" example tests Save and Load with all types of variables.

While the "SaveAndRestoreVars.txt" example shows a more complex method
that is used to save the variables and restore them using a file of your choice.

theremino System - Theremino Automation - February 26, 2025 - Page 54

Load (Images, Videos and Sounds)

With the LOAD instruction you can upload images, videos and sounds, they must
be in the "Media" folder. If they are in a sub-folder you must add the sub-folder
name, as in this example: Load "Sound\Ringer.mp3"

Image files can have the following extensions:
jpg jpeg bmp png exif tiff svg

Video files can have the following extensions:
avi wmv mpg mpeg m2ts m3u mp4 m4v mp4v 3g2 3gp2 3gp 3gpp mov gif

The sound files (and music) may have the following extensions:
mp3 wav m4a aif aifc aiff au snd aac adt adts flac mid midi rmi
(if the file is missing you will hear a short "beep" in its place)

Here are some examples of statements that load these files
Load Image1.jpg

Load Video1.avi

Load "Science Picnic 2014.mp3"

Before to load the audio files, you could set the volume with the instruction:
Load Volume nn (with nn from 0 to 100)

The Volume instruction must be before the Load instruction and has effect on all the
audio files, excluding the .mid e .midi files.

- - - - - -

After loading the video and audio, you could use the following instructions:
Load Hide become invisible images and videos (the program reappears).

Load Stop stops the execution of the video and audio.

Load Pause pause the playing of the video and audio files.

Load Position Sec changes the position (in seconds) of video and audio files.

Load Play restarts the video and audio files that where paused.

- - - - - -

See also the "Media" functions page, and the examples:
 "Demo-ImagesVideoSounds.txt" in the "Demo LOAD and MEDIA functions" folder.

And the two examples showing file names composed with strings and numbers:
"Demo - BM_Foundation1.txt" and "Demo - BM_Foundation2.txt"

theremino System - Theremino Automation - February 26, 2025 - Page 55

Load (txt, pdf, doc, etc...)

With the Load statement instead of loading and viewing files with automation, you
can instruct the Windows system to open any type of file. In this case Windows will
open the file with the program that has been predefined for its extension.

So usually if it is a ".txt" it will be opened with Notepad, if it is a ".rtf" with WordPad,
if it is a ".doc" with Word or with OpenOffice and if it is a ".pdf" with Google Chrome
or with a PDF-Reader.

Warning
Do not use Load to load a file from disk into a string!

To do this you must use the GetTextFile() function
as in this example String str = GetTextFile("MyFile.txt")

- - - - -

If you Load a ".txt" file located in the Programs folder. then the file is loaded as an
automation program. If it is in another folder, or starts with "Files \", or has an
extension other than txt, then it is loaded with the default Windows program for its
extension.

If the file does not have a full path then it is loaded from the "Files" folder.

To use a relative path it must be taken into account that the starting folder is always
"Programs". The following example shows how it is possible to indicate that the
"Example1.pdf" file is in the "Files" folder:

Load "..\Files\Esempio1.pdf"

In this example the initial colon means: "go up one folder".

- - - - -

Image, video and music files (with extensions .jpg .bmp .png .gif .avi .wmv .mpg
.mp4 .mov .mp3 and .wav), are loaded by automation only if they are located in the
"Media" folder".

If they are not in the "Media" folder, then they will be opened by the Windows
operating system with the default program for their extension.

theremino System - Theremino Automation - February 26, 2025 - Page 56

Load (Program)

With the Load statement you can load an automation program by choosing it
among those who are present in the automation folder "Programs".

The name of the program to be loaded must be enclosed in double quotes.

The program file to load must be located in subfolders of the application
Automation, starting from the "Programs" folder.

The program file to upload must end with the extension ".txt"

Here's an example:

Load "Examples\Demo LOAD PROGRAM\Demo-LoadProgram_2.txt"

The program that is uploaded will replace the current program and will continue
running immediately, starting with the first line of the newly loaded program.

See the examples in the folder
"Demo Programs \ Demo LOAD PROGRAM”

Load (Variable from File)

With the Load instruction you can load an entire text file into a variable, which can
be one of the predefined ones (from s1 to s99) or an user-defined "string" variable.

The name of the file to be loaded in the variable, could be enclosed in double
quotes, or even without quotes. The file must have ".txt" extension and must be in
the same folder as the program, or in the "Files" folder.

Here's an example: Load s1 SetupFile.txt

After loading from file, the variable can be separated into lines and fields, using the
GetSeparatedStringCount and GetSeparatedString functions.

See the examples in the folder
"Demo Programs \ Demo LOAD TXT files"

theremino System - Theremino Automation - February 26, 2025 - Page 57

Load (web address)

The LOAD instruction, followed by a web address, opens a web page.

Example: Load http://www.google.com

When writing the addresses in the LOAD instruction, the initial part http:// it's
necessary.

In this image you see a YouTube page, with videos of Theremino system.

Once you open a page it is possible to navigate anywhere on the web, using links
found on web pages.

Alternatively, you can write a new address in the bar at the bottom, as explained on
the next page.

theremino System - Theremino Automation - February 26, 2025 - Page 58

Load (options for web pages)

The address bar

Writing an address in this bar, you can navigate to a new web site. When writing in
this bar, you can also omit the http:// that precedes the address.

After writing the address, to begin the navigation to the new site, you must press
ENTER.

The two buttons on the left are used to open the previous or the next page.

Zoom the page in and out

In some cases it may be
useful to magnify the page, for
easier reading of the
characters.

In other cases it may be useful
to reduce its size, to avoid
having to use the sliders too
often.

To zoom the web page, you
can use keyboard shortcuts, or
the mouse wheel.

First of all you must click on the web page to be sure it is selected, otherwise the
following commands will not work.

Press Ctrl and "+" key, to enlarge the page.
Press CTRL and the "-" button, to reduce the size of the page.
Press CTRL and the ZERO button, to reset the normal magnification.
Press CTRL and scroll the mouse wheel, to change the magnification.

theremino System - Theremino Automation - February 26, 2025 - Page 59

The "Option" statements

Instructions starting with the word "Option" change the overall behavior of the
program. Currently there are only three instructions, but we will probably add more
in future versions. To take effect, they must be executed at each program start, so
they are usually written in the initial area, before the "Stop" instruction. However,
you can also change them later, during program execution.

Option GlobalKeys Enable

Normally the Key statement and the Key () function only work if the Automation
application is selected and is not minimized. But if you execute this instruction then
the keyboard keys always act.

If you enable this option you will have to be careful not to use the keyboard for
other applications, otherwise you could run commands by mistake.

Option GlobalKeys Disable

After enabling the GlobalKeys option you may want to disable it while the program
is running.

This instruction restores normal operation with the keyboard keys that act only if the
Automation application is selected and is not minimized.

Option Speed n

Normally you adjust the program execution speed with the "Speed" slider,
explained in This Page. But in some cases you can write the Speed instruction in
the same program, and in this case the Speed slider is set from program too.

The number "n" can vary from 1 to 9 and is the same number indicated by the
Speed slider.

Option Transparency n

Instead of using the "Transparency" slider, explained on This Page, you can
program the transparency by setting an "n" number from 0 to 9.

See also the examples in the "Demo Programs \ Demo Option" folder

theremino System - Theremino Automation - February 26, 2025 - Page 60

PressKeys

This instruction sends characters and commands, as pressing the keyboard keys or
pressing and releasing the Mouse buttons.

All letters, numbers and commands sent with PressKeys must be separated with a
space, as in this example:
PressKeys A B C D Enter

To send spaces, use the "Space" command, as in this example:
PressKeys A B Space C D Enter

Spaces separate the letters from each other and also allow you to send commands.

Here is the complete command and symbol list:
Tab Esc Space Enter Return Left Right Up Down Backspace Pause
CapsLock PageUp PageDown End Home PrintScreen Insert Delete
ScrollLock NumMul NumAdd NumSub NumDiv NumLock NumDelete Num0 Num1
Num2 Num3 Num4 Num5 Num6 Num7 Num8 Num9 f1 f2 f3 f4 f5 f6 f7 f8 f9
f10 f11 f12 : ; = , < > _ . ? * - / ~ ` [{ \ |] } ' a b c d e f
g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 LButtonDOWN
LButtonUP MButtonDOWN MButtonUP RButtonDOWN RButtonUP

The following commands are modifiers that are executed before any other
character. All characters in the line will be executed with the modifier key pressed.
SHIFT CTRL ALT WINDOWS

Here are two examples that run the C and V keys while holding CONTROL
PressKeys CTRL C
PressKeys CTRL V

Between a PressKeys and the next it may be necessary to add a pause (Wait) to
allow time for Windows to execute the previous command.

Here is an example that opens the Windows-x menu, and then the command
window and finally executes a DIR command.
PressKeys WINDOWS x
Wait Seconds 0.5
PressKeys i
Wait Seconds 0.5
PressKeys d i r Enter

Note that this example depends on system language and on menu containing
"Windows PowerShell". Also note that the x after WINDOWS must be lowercase,
otherwise it would be sent as SHIFT-X and the menu would not open.

The PressKeys command is not very reliable, it can depend on the system
language and execution times. For more information see this page and this page

PressKeys can be used with a variable containing the characters, for example you
could write: s1 = "d i r Enter" and then: SendKeys s1

theremino System - Theremino Automation - February 26, 2025 - Page 61

https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-keybd_event

SendKeys

This instruction is similar to the previous "PressKeys" but has some advantages
and also some disadvantages.

The main advantage is that you can write the text to be sent, without separating the
letters with spaces. On the other hand, the commands must be enclosed with
braces, as in this example: SendKeys ABCD{ENTER}

There are also other subtle differences that make this command more comfortable
in some cases but more uncomfortable in others. For example with SendKeys you
cannot open the Windows-X menu of the example on the previous page.

The commands are also slightly different, here is a complete list:
{TAB} {SHIFT} {CTRL} {ALT} {WINDOWS} {ESC} {ENTER} {LEFT} {RIGHT}
{UP} {DOWN} {BACKSPACE} {BREAK} {CAPSLOCK} {PGUP} {PGDN} {END}
{HOME} {PRTSC} {INSERT} {DELETE} {SCROLLLOCK} {NUMLOCK} {HELP}
{ADD} {SUBTRACT} {MULTIPLY} {DIVIDE} {F1} {f2} {f3} {f4} {f5} {f6}
{f7} {f8} {f9} {f10} {f11} {f12} : ; = , < > _ . ? * - / ~ `
[{ \ |] } ' a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6
7 8 9

To specify that any combination of SHIFT, CTRL, and ALT should be held down
while several other keys are pressed, enclose the code for those keys in
parentheses.

For example, to specify to hold down SHIFT while E and C are pressed, use "+
(EC)". To specify to hold down SHIFT while E is pressed, followed by C without
SHIFT, use "+EC".

Instead of the three control characters (+ ^ %) you could use the {SHIFT}{CTRL}
{ALT} modifiers. Anyway the three characters (+ ^ %) are reserved as modifiers
and you can not use them. So to send a "+" you have to write {ADD}

- - - - -

To specify repeating keys, use the form {key number}. You must put a space
between key and number. For example, {LEFT 42} means press the LEFT ARROW
key 42 times; {h 10} means press H 10 times.

- - - - -

The SendKeys command is not very reliable, it can depend on the system language
and execution times. For more information see this page.

SendKeys can be used with a variable containing the characters, for example you
could write: s1 = ABCD{ENTER} and then: SendKeys s1

theremino System - Theremino Automation - February 26, 2025 - Page 62

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.sendkeys?view=netframework-3.5

Print

This statement prints, on the application bottom line, a numerical value or a
character string.

After the word PRINT you can write any formula, even complex, composed with
numerical values and character strings.

Examples:

Print "Donald Duck" result: Donald Duck

S1 = "PI ="

S2 = Format (Math_PI, "")

Print S1 + S2 result: PI = 3.14159265358979

Print "Duck" = "Cat" result: False

Print Mid("Duck", 4, 1) = "k" result: True

Print CLS result: All the text cleared

Usually you use this instruction to check the the program operation, to know the
intermediate values of the calculations and to highlight that certain lines have been
executed. To have a larger area for the text to be printed, you could use the
Controls OpenTextBox statement.

Insert spaces in the strings

Sometimes it may be useful to insert many spaces in a string. Other times you
could add special spaces that do not allow display and printing devices to wrap at
that point.

To insert spaces in the strings, the following methods can be used:

Enclose the string with double quotes and insert the spaces in the string.

Use the PadLeft, PadRight and Chars functions.

Use the NBSP constant. (Non Breaking Spaces)

Insert NBSP spaces in the string itself with ALT 255 (press ALT and the key
sequence 2 5 5 on the numeric keypad, and finally release the ALT key).

- - - - - -

To experiment with the Print instruction use the example "Demo TextBox"

theremino System - Theremino Automation - February 26, 2025 - Page 63

Save

Save slot and variables

The instruction Save Slots saves the values of all slots (from 0 to 999), in the
"_Slots.txt" file (valid for numeric Slots only, not the SlotText).

The instruction Save Vars saves all the predefined variables values (v1..v99 and
s1..s99), in the file "_Vars.txt"

More info in the pages Load/Save Slots and Load/Save Vars

Append some text to a file

The instruction Save StringToFile s1 s2 appends the text contained in the
variable s1, to the file whose name is specified by s2.

The file name must also include the extension, usually "txt". Instead of s1 and s2
you can use user-defined variables or even write directly text strings (enclosing the
text with double quotes).

If the path is missing then the path becomes the "Files" folder, which is next to the
"Automation.exe" file.

Files are normally written as Unicode (two bytes per character) so they can also
contain Chinese characters. To write a file in ASCII (one byte for each character)

you must precede each string you write with the text "<ASCII>".

Also be careful not to "append" ASCII lines to a pre-existing file of the Unicode type,
in which case delete it beforehand with the DeleteFile instruction.

See: "Programs\Demo Programs\Files\WriteFile_ReadFile_SelectFile.txt"

Delete a file

The instruction Save DeleteFile s1 deletes the file specified by s1.

The file name must also include the extension, usually "txt". Instead of s1 you can
use an user-defined variable or even write directly a text string (enclosing the text
with double quotes).

If the file is not found then the path becomes the "Files" folder, which is next to the
"Automation.exe" file.

Copy a file

To copy a file you use StringToFile and GetTextFile as in this example:
Save StringToFile GetTextFile("File.txt") "FileCopy.txt"

As always you can use variables and if you do not specify the path then the "Files"
folder is used, which is next to the "Automation.exe" file.

theremino System - Theremino Automation - February 26, 2025 - Page 64

Select - Case - CaseElse - EndSelect

The Select-Case construct allows you to choose between a number of cases. In
these examples could be only two "Case" but it could be dozens.

Obtaining the same operation with a series of "IF" would be more complex and the
operation would be less noticeable.

Select v1
 Case 1
 Print 1
 Case 2
 Print 2
 CaseElse
 Print “Not 1 and not 2”
EndSelect

In this example, if the variable v1 is equal to 1 then the first “Case” is selected. If is
equal to “2” then the second “Case” is selected.

The “CaseElse” is selected if all the preceding “Case” are not matched.

Our Select-Case implementation is particularly flexible. Almost all languages
require that after the "Cases" there is a constant value, instead in Automation you
can also write complex expressions.

In the next image you can see a simple example, only functions that read slot, but
as addition and multiplication, and after the "Select" after the "Case", you can write
expressions of any complexity.

v1 = 3
Select Slot(1)
 Case v1 * 2
 Print “This is executed when Slot(1) = 6”
 Case Slot(2) + 2
 Print “This is executed when Slot(1) = Slot(2) + 2”
EndSelect

WARNING: a terminal “EndSelect” is always required.

- - - - -

See also the examples in the folder
"Demo Programs \ Demo Select-Case"

theremino System - Theremino Automation - February 26, 2025 - Page 65

Select - Case (special features)

Our Select-Case implementation allows unusual comparisons, impossible in almost
all programming languages, but very useful.

The "Case" statements compares strings regardless of upper and lower case
letters. Also you can compare everything, strings, numbers, Boolean operators, and
expressions with true or false results, permuting them as you like, in the Select and
Case statements.

For example, you could write "Select True", and the first "Case" with an expression
that is "True", would be executed .

Select True
Case Slot (1) <> 0 And s1 = "Is OK" And v1 = 3

...
EndSelect

If instead you wrote "Select False", the first "Case" with an expression that is
"False", would be executed.

Alternatively, you could write "Select Slot (1) = 3" that would execute "Case True" if
the Slot (1) is 3. Otherwise would execute the "Case False" (or the "CaseElse").

Select Slot (1) = 3
Case True

...
Case False

...
EndSelect

Could also write "Case Slot (2) = 5", and this would behave like a "Case True", only
if the Slot (2) was worth 5. Otherwise it would behave like a "Case False".

You can therefore make all kinds of statements and choices, writing them in the
way you prefer, and that seems more natural.

- - - - -

See in the folder "Demo Programs \ Demo Select-Case",
the example “Demo – Select-Comparations”

and the “Demo - Select-True-False”

theremino System - Theremino Automation - February 26, 2025 - Page 66

Slot

This instruction reads and writes the numeric Slots.

The slots are the center of the theremino-system communication, and who reads
these instructions it should already know what they are.

Otherwise, we recommend read this section and the following about SlotText, and
maybe the whole communications page from start to finish.

Here are some examples of writing in a Slot

Slot(1) = 12 The value 12 is written in Slot 1

Slot(2) = Rnd * 1000 In the Slot 2 is written a random value from 0 to 1000

Slot(3) = Sin(1 / 3) In the slot 3 is written the number 0.333333333333333

Examples reading from a Slot

v1 = Slot(1) The value of slot 1 is read and assigned to the variable v1

If Slot(2) < 500 If Slot 2 is less than 500, than a sound is played
Beep

EndIf

More complex expressions are also possible, the following expression writes the
value 16 into Slot 3.

Slot (1) = 12
Slot (5) = 3
Slot(Slot(5)) = Slot(Sin(2)) + Slot(1) / 3

- - - - -

See also the examples in the "Demo Programs \ Demo Slots" folder

To view the values of variables and Slots,
you may want to open the Debug window, with the right mouse button.

theremino System - Theremino Automation - February 26, 2025 - Page 67

http://www.theremino.com/en/technical/communications
http://www.theremino.com/en/technical/communications#slot

The Command Slot

To communicate with HAL applications a special Slot is used, the "Command Slot".

Through the Command Slot (by means of special numbers called NAN) you send
instructions to the HAL applications and you can also read information on the
number of connected modules and errors, here are some examples:

Slot 0 = Recognize HAL applications must recognize connected modules
(as if pressing the "Recognize" button on the HAL).

Slot 0 = Calibrate HAL applications must calibrate all modules that can be
calibrated, usually the CapSensors (as if you pressed the
"Calibrate" button on the HAL).

There are also commands that are not sent to the Command Slot, but directly to the
Slots to which actuators are connected, such as Servo-motors or Stepper motors.
Here are some examples:

Slot 1 = Sleep It cuts power to the Servo-motor connected to Slot 1

Slot 3 = Reset The Stepper motor connected to Slot 3 is reset with a new
value (for details see the HAL instructions).

From the Command Slot you can also read information about the connected devices. After
a "Recognize" command or after starting the HAL application, the Command Slot contains
the number of connected devices and can be read for example with:

v1 = Slot (0) In v1 you get the number of devices (or -1 during recognition)

The Command Slot can contain NAN numbers corresponding to the following strings:
"Sleep", "Reset", "Recognize", "Calibrate", "Master disconnected ERROR", "No Masters"

S1 = DecodeCommandSlot (0) This function gets the command and error strings.

- - - - -

Normally the Command Slot is the Zero Slot but, when using multiple HAL applications on
the same PC, a different Slot could be used for each of them. In these cases, you open
the INI file of the HAL application with the Notepad and modify the "CommandSlot = 0" line
with a number other than zero.

See also the examples in the folder
"Demo Programs \ Demo SlotZeroCommands"

theremino System - Theremino Automation - February 26, 2025 - Page 68

SlotText

This instruction reads and writes text strings in the SlotText.

The Slots are the center of the theremino-system communication, and who reads
these instructions it should already know what they are.

Otherwise, we recommend read this section and the following about SlotText, and
maybe the whole communications page from start to finish.

Be careful not to confuse Slots with SlotText, have similar addresses
(from 0 to 999), but they write and read in different memory areas.

In addition, the Slots contain numbers (integers or floating point),
while SlotText contain character strings (up to 100000 characters).

 With SlotText you can control various applications, for example:
HAL, ArduHAL, IotHAL, QRdecoder, Cobot, Blockly, CNC, Dictation, GPS,Loggers,

Motors, OpenAi, Player, SloTextToSpeech, Spectrometer and SlotViewer.

In the folder "Programs\Demo Programs\SlotText Commands" there are many
examples to try to control various applications with SlotText.

- - - - -

Here are some examples of writing text strings in a SlotText

SlotText(1) = "House " + "on the tree" The text is written in SlotText 1

SlotText(2) = Rnd A random value is transformed to text and written.

SlotText(3) = 2.5 + 3 In the SlotText 3 is written the text "5.5"

Examples reading text strings from a SlotText

s1 = SlotText(1) A string is read from the SlotText and assigned to the variable v1

If SlotText(2) = "OK" If the SlotText 2 contains "OK", than a sound is played
Beep

EndIf

Speed

The "Speed n" instruction is changed to "Option Speed n". See this page.

theremino System - Theremino Automation - February 26, 2025 - Page 69

http://www.theremino.com/en/technical/communications
http://www.theremino.com/en/technical/communications#slot

Stop, End

With STOP the program stops, but continues to answer the PC keyboard
(instruction Key n Goto/Gosub xx), Buttons (instruction Button n Text xx),
and also to Slots (instruction Button n Slot nn).

Instead, the statement END totally terminates the program execution. To start it
again you will have to press the RUN button.

TTS (Text to speech)

These instructions translate the text into speech. Windows 10 usually has at least
your local language and the English. To add other languages do "Settings" , "Date,
time and language", "Language" and finally with "Add a language".
TTS SelectVoice "xxx gender" Select the voice among installed.

Examples:"ENG","ENGMALE","ENGM","ENGF","ENGN","ENG Neutral","FRA",

"ITA FEM.","CHI","CHI F","ChiMale","ZHO M","ZHO","CHI neutral"

TTS SetVolume n Volume adjustment (values from 0 to 100)
TTS SetSpeed n Speed adjustment (values from -10 to 10)

TTS Speak "xxx" Speak the "xxx" text

TTS SpeakWait "xxx" Speak the "xxx" text and Wait until finished

TTS Stop Stop talking immediately

TTS Pause Pause the pronunciation temporarily

TTS Resume Resume speaking the text that was paused

TTSvoices Returns the list of the installed voices

TTSlanguage Returns the voice "ISO" name (ENG, CHI..)

TTSready Returns "True" if TTS is inactive

TTSpaused Returns "True" if TTS is paused

TTSspeaking Returns "True" if TTS is speaking

Setting Volume to zero the TTS Speak function is disabled and TTSready returns
immediately "True".

To pronounce numbers and strings there are also the applications SlotsToSpeech
and SlotTextToSpeech. And there is also the Voice application which, in addition
to speaking, recognizes words from a list of words and phrases. These applications
also work alone, but you could make them interact with Automation through Slots.

See also the examples in the folder " Demo Programs \ Demo TTS "

theremino System - Theremino Automation - February 26, 2025 - Page 70

https://www.theremino.com/downloads/biometry#voice
https://www.theremino.com/downloads/biometry#slottexttospeech
https://www.theremino.com/downloads/biometry#slotstospeech

Variable

The Automation language contains some predefined variables.

v1 v2 v3 ... v98 v99 <- Predefined numerical variables

s1 s2 s3 ... s98 s99 <- Predefined string variables

In addition to the predefined variables, other variables can be defined

Variable Numeric Pluto <- User defined numeric variable

Variable String str1 <- User defined string variable

You can also define variables by omitting the word "Variable"

Numeric Pluto <- User defined numeric variable

String str1 <- User defined string variable

All the variables must start with a letter (upper or lowercase)
and be at least two characters long.

- - - - - - -

The Automation language must be simple to understand so there are no local
variables. All variables, no matter where and how they are defined, have the same
value at every point and every function of the program.

So be very careful to use different variables in each function
(unless you want to use them to communicate values between functions)

All uninitialized variables contain the value zero or an empty string. To give a value
to the variables, write as in these examples:

v1 = 12

s1 = "Pluto"

value1 = 123

str1 = "This is a string"

These lines only act if they are executed.
Otherwise the variables remain uninitialized.

theremino System - Theremino Automation - February 26, 2025 - Page 71

Variable - Immediate assignments

When defining new variables you can also assign them an immediate value, as in
these examples:

Numeric Pluto = 12 * 44

String str1 = "This is a string" + Str(Pluto)

Immediate values are assigned to all the variables when the program is started
(with RUN), even if the assignment lines are not executed.

If the program later executes these lines then the values are assigned another time,
eventually with different values...

If the assignments contain formulas and other variables (such as the "+ Str (Pluto)"
in this example), then the actual value you assign to the variable depends on what
was in "Pluto" previously.

Pay attention to these behaviors because in some cases what happens may be
unintuitive.

For example, if variables are used during the assignment of values (such as the
"Pluto" variable in the example on this page) these may already be initialized when
the program is started, or they may not be.

In other words, the value of the variables can depend on the order in which the
assignments are written, and later also on the order in which both the immediate
assignment lines and those containing normal assignments will be executed.

Everything becomes complicated if the assignments contain formulas and
references to other variables which in turn could depend on other variables yet ...

If in doubt, write an initialization function and call it before using variables.
Something similar to this example, but to be studied carefully from time to time:

Label InitAllVariables

 String str1 = "This is a string"

Numeric Pluto = 12 * 44

String str2 = str1 + Str(Pluto)

Return

Experiment with the examples in the folder
"Demo Programs \ Demo Immediate Vars”

theremino System - Theremino Automation - February 26, 2025 - Page 72

VarsFromFile

In some cases it may be useful to load variable values from a configuration file. So
you could, for example, make the same program work on different machines, with
different dimensions and different limits for the movements.
This command could also be useful on other occasions, because it is a generic
command, which can also be used several times in the same program and also by
reading different files at various points in the program.

How the VarsFromFile command works
Each time the command VarsFromFile FileName.txt is run, all the variables
indicated in the file are updated with the values defined in the file.
The file must exist and must not contain errors, otherwise an error message
appears and the program stops.
In the file, the variables are written one per line, followed by an equal and the value
to be assigned to the variable, as in the following example.
Slot_LedR = 907
Slot_LedG = 908
Slot_LedB = 909
Array1 = 11 22 33
Array2 = 11,22,33

To avoid errors all the variables indicated in the file must be declared in the
program in execution.
The variable names must match, but it does not matter if the characters are
lowercase or uppercase, and you can also use spaces or tabs before and after the
equal.
In the case of string variables, it is possible to include spaces in the string by
enclosing it between two double quotes. as shown in these examples:
StrVar1 = " ABCD " ' string with spaces
StrVar2 = ABCD ' leading and trailing spaces removed

You can place the file in the "Files" folder or in the main folder of the application
(which contains Automation.exe). You can also place it in sub-folders,

but in this case you must prefix the file name with
the part of the path necessary to go down to the sub-folder.

Experiment with the "VarsFromFile" example
located in the "Demo Programs \ Demo Vars" folder.

The "VarsFromFile" example reads the variables
from the "VFF_Example.txt" file located in the "Files" folder.

theremino System - Theremino Automation - February 26, 2025 - Page 73

Wait

The program stops on the line of the WAIT instruction, and will continue in the
following line, upon the occurrence of certain conditions.

Here are some examples:

Wait Seconds 1:53 Waits for a second and 53 cents

Wait Button "Button 1" Waits for the pressure of the Button 1 (if initialized)

Wait Slot (4)> 500 Waits for the Slot 4 value becoming greater than 500

Wait AppRunning("xx.exe") Waits until the application is running
Wait Not AppRunning("xx.exe") Waits until the application is not running
Wait Application xx.exe (deprecated) Waits until the application is closed

If you specify only the application file name
(for example "Theremino_SlotViewer.exe")

then the application is searched in the folder "Apps"
and also in all its sub-folders.

See also the examples in the folder "Demo Programs \ Demo Wait"

Window commands

Window MinSize

Window Sizable

Window Maximized

Window FullScreen

With these statements you can change the size of the window, during program
execution.

The images on the next page show how the program window appears in various
sizes.

Window SetFocus

With "SetFocus" you activate the Automation window and send it the Windows
system "focus".

This command can be useful when you want to make sure you are receiving events
from keystrokes on the keyboard.

theremino System - Theremino Automation - February 26, 2025 - Page 74

Window

You can also choose manually the window
dimension options, using the application
menu commands Which opens with a
right-mouse click on the left side of the
application.

See also the example
"Demo - Windows.txt"

theremino System - Theremino Automation - February 26, 2025 - Page 75

Calling functions

Eliminating Gosubs and passing parameters to functions simplifies programs and
makes code more readable.

The function to which you pass the parameters starts, for example, like this:

Label Function1
Variable Numeric Param1
Variable Numeric Param2
Variable String Param3
....

If you wrote something like this in previous versions of Automation:

Param1 = 12
Param2 = Rnd
Param3 = Now
Gosub Function1
Param1 = 567
Param2 = 89
Param3 = "23/07/2022"
Gosub Function1
Param1 = 10
Param2 = 11
Param3 = Now
Gosub Function1

Now the same sequence is simplified with:

Function1(12)(Rnd)(Now)
Function1(567)(89)("23/07/2022")
Function1(10)(11)(Now)

- - - - -

Function parameters are written in round brackets.

Parameters of type string must be enclosed in double quotes.

The details of passing the parameters
are explained on the next page.

theremino System - Theremino Automation - February 26, 2025 - Page 76

Function parameters

The function you pass parameters to must start with one or more rows of variables,
that must come all before any other line containing statements.

Parameter variables can be any number and can be all numeric or all string or
mixed in any way.

Beware that unlike other languages, variables are NOT local to the function in
which they are written, but readable and writable by all other areas of the program.
This forces you to write many more variables, all with different names, but makes

programming easier for those with little experience.

A good way to generate definitely different variables is to use the initials of the
function name as in the following example.

Label FunctionWithParams
Variable Numeric FWP1 '<-- FWP are the name initials
Variable Numeric FWP2
Variable String FWP3
....

When calling the function, you write parameters in round brackets as in following
examples (for each parameter the initial and final Spaces and TABs do not count).

FunctionWithParams(Rnd)(-77.234)("The quick brown fox")

FunctionWithParams(Sin(x))(Cos(x))("The day is: " + Now)

Parameters of type string must be enclosed in double quotes, as in the previous
two examples, otherwise you will get errors.

Each parameter will then be available in the corresponding variable. If you write
more parameters in parentheses than there are variables, then the excess
parameters will have no effect. And if there are more variables than the parameters
in brackets, then the excess variables will not be set.

If you want to leave a variable unchanged and write the following ones, use the
word (Null) as in the following example.

FunctionWithParams(Sin(x))(Null)("The day is: " + Now)

See also the examples in the folder
"Demo Programs \ SlotText Commands"

theremino System - Theremino Automation - February 26, 2025 - Page 77

Expressions and Functions
Instead to write a number or a character string, you can write a complex
expression. Expressions may contain functions, operators, variables and constants.
The IF and Select-Case constructs, can also contain boolean conditions.

The functions
Slot(n) Sin(v) Cos(v) Asin(v) Acos(v) Tan(v) Atan(v) Atan2(v, v)
Sqrt(v) Abs(v) Sign(v) Pow(v, v) Exp(v) Exp2(v) Exp10(v) Log(v)
Log2(v) Log10(v) Int(v) Round(v) Mid(str, index) Mid(str, index,
len) Len(str) Trim(str) PadLeft(str, places) PadRight(str, places)
UCase(str) LCase(str) WCase(str) Format(v, style) Format(v) Str(v,
style) Str(v) Chars(str, number) Replace(str, oldStr, newStr)
RemoveComments(str) Chr(n) Asc(str) Bin(n) FromBin(str) Hex(n)
FromHex(str) Now() Today() Date(year, month, day) ElapsedTime Rnd
Rad(v) ConvertToIEEE754(Value, ConvertSingle, ReverseBytes)
COM_Status COM_Received COM_Portnames MouseX MouseY MouseXP
MouseYP MouseButtons GetSeparatedStringCount(str) CommandText()
GetSeparatedStringCount(str, separator) GetSeparatedString(str)
GetSeparatedString(str, separator) Key(str) DecodeXML(str)
FormatXML(str) FormatXML(str,n) Limit(n, Min, Max) LimitReached

The operators
And Or Xor + - * / And, Or and Xor can be boolean and numeric

The user defined variables (examples)
Variable Numeric Pluto User defined numeric variable
Variable String str1 User defined string variable

The predefined variables
v1 v2 v3 ... v97 v98 v99 Predefined numerical variables
s1 s2 s3 ... s97 s98 s99 Predefined string variables

The constants
False True CRLF NBSP TAB Math_PI Math_E Infinity Infinity = 9e99

The conditions
Conditions are expressions that end with True or False.
True or False is determined by comparisons (> <=> = <= <>).

The numerical values
The decimal separator is always the dot. Example: 3.1416

The exponential notation is valid too.
For example: 3e5 that means 3 with five zero, ie. 300000
or: -2.5e2 that means -250
or: 7.3e-5 that means 0.000073

theremino System - Theremino Automation - February 26, 2025 - Page 78

Expressions results
This language automatically converts Booleans, Numbers and Strings when needed, so in
some cases the ZERO could be considered False, and any other number considered True.

Here are some examples of expressions and conditions
2 * 3 + 4 * Sqrt(16) This is an expression, with result 22

PI * 2 This is an expression, with result 6.2831853

"Duck" = "Cat" This is a condition, with result False

For other examples of functions open the file "Demo - Print.txt"
and the files in the folder "Demo Functions and Errors"

The Slot () function

This function reads a numeric value from a Theremino System Slot.

For example, the following line reads the Slot 2 value and puts it in the variable v1:

v1 = Slot (2)

There is also an expression for writing to the Slots, for example the following line
writes a numeric value in the Slot 12:

Slot (12) = 500.33

You can also compose complex expressions and use variables as Slot indices. For
example, the following three lines copy the contents of Slots 0 to 9, into Slots 100 to
109, increasing the numerical values by 500.

For v1 = 0 To 9
Slot (v1 + 100) = Slot (v1) + 500

Next

There are also special instructions for the Command Slot (usually the Zero Slot).
See the Zero Slot - Special Commands page. Here are some examples:

S1 = DecodeCommandSlot (0)
Slot (0) = Sleep

theremino System - Theremino Automation - February 26, 2025 - Page 79

Numerical functions

Please note that all functions in Automation have parentheses,
so do not use % for modulus or ^ for power.

Pi - Returns the value of Pi Greek (3.14159265358979)

Sin (number) - Returns the sine of the number

Cos (number) - Returns the cosine of the number

Asin (number) - Return the arc sine of the number

Acos (number) - Return the arc cosine of the number

Tan (number) - Return the tangent of the number

Atan (number) - Return the arc tangent of the number

Atan2 (number, number) - Arctangent extended to four quadrants

Sqrt (number) - Return the square root of the number

Abs (number) - Returns the absolute value of the number (always positive)

Sign (number) - Returns the sign of the number (-1, +1, or zero)

Min (number, number) - Returns the lesser of the two numbers

Max (number, number) - Returns the greater of the two numbers

Mod (number, module) - Returns the first number limited by the module

Int (number) - Returns the integer, rounded down

Rad (numero) - Ritorna il numero convertito in radianti (n * PI / 180)

Round (number) - Returns the number rounded to the nearest

Rnd - Returns a random number between zero (inclusive), and one (not included).
The number is totally random because the Randomize function is used.

Pow (number, number) - Returns the first number, elevated to the second

Exp (number) - Returns the natural logarithm base, elevated to "number"

Exp2 (number) - Returns "2" elevated to "number"

Exp10 (number) - Returns "10" elevated to "number"

Log (number) - Returns the natural logarithm (in base "e") of the "number"

Log2 (number) - Returns the logarithm in base "2" of the "number"

Log10 (number) - Returns the logarithm in base "10" of the "number"

Limit (number, Min, Max) - Returns "number" limited between Min and Max

LimitReached - Returns True if the Limit function has limited a "number"

See also the examples in the folder "Demo Programs \ Demo Math Functions"

theremino System - Theremino Automation - February 26, 2025 - Page 80

String functions

Left (string, n) - Returns the first "n" characters of the string

Right (string, n) - Returns the last "n" characters of the string

PadLeft (string, length) - Returns the string padded with spaces up to "length"

PadRight (string, length) - Returns the string padded with spaces up to "length"

Len (string) - Returns the string length (number of characters)

Trim (string) - Returns the string without leading and trailing spaces and TABs

Ucase (string) - Returns the string with all uppercase characters

Lcase (string) - Returns the string with all lowercase characters

Wcase (string) - The first letter capitalized and the other tiny

Chars (string, number) - Returns the string repeated number times.

Replace (string, s1, s2) - Returns a string with all the occurrences of the string s1
replaced with the string s2.

RemoveComments(string) - Return a string without the final part containing the
comments. Comments begin with a single quote ('), which is considered only if it is
outside a string, i.e. not enclosed in double quotes.

Mid (string, start, len) - Returns a string starting from "start", and long "len"

Mid (string, start) - Returns a string starting from "start", up to the end.

The "start" parameter of the Mid () functions begins from "1". If start is "0" or a
number less than zero, the function always returns an empty string.

GetSeparatedStringCount (string, optional separator = space)

GetSeparatedString (string, index, optional separator = space)

These two functions count and extract sub-strings from a string, by breaking it at a
separator. The separator can be a single character or a string of characters. If the
separator is omitted then a space is used as a separator. Any repetitions of the
separator count as a single separator.

The GetSeparatedString functions returns the sub-string indicated by the "index"
number. The first sub-string has the zero index.

StringContains (string, "text-to-search") - Returns "TRUE" if the string "text to
search" is contained in the string "string". This function is not case sensitive,
uppercase and lowercase characters are equivalent.

theremino System - Theremino Automation - February 26, 2025 - Page 81

Conversion functions

Chr (number) - Returns the char corresponding to the number (from 0 to 65535)

Asc (string) - Returns the ASCII value of the first character of the string

Bin (number) - Returns a string with the number converted to binary

Hex (number) - Returns a string with the number converted to hexadecimal

FromBin (string) - Returns a number corresponding to the binary string

FromHex (string) - Returns a number corresponding to the hexadecimal string

Val (string) - Transform to number a numeric value contained in a string

ConvertToIEEE754(Number, ConvertSingle, ReverseBytes)

Returns a string containing four or eight hexadecimal values, with the number
converted according to the IEEE754 format.

If ConvertSingle is written True, four values are returned, otherwise eight.

If ReverseBytes is written True, the butes are reversed in LittleEndian format.

Example: ConvertToIEEE754(1.234, True, True) = "B6 F3 9D 3F"

- - - -

The following four functions do all the same conversion from number to string using
a great number of different options.

Format (number, style) - Convert a number to String

Format (number) - Convert a number to String

Str (number, style) - Convert a number to String

Str (number) - Convert a number to String

Read the details in the next page

theremino System - Theremino Automation - February 26, 2025 - Page 82

The Format() and Str() functions
The Format function (number, style) converts a number to a string.

In the "style" parameter you must provide a string that specifies how it should look
the converted number.

Format(1234.56, "000000,000") Result: "001234.560"

Format(1234.56, "0.0") Result: "1234.6"

S1 = Format(1234.56, "0") Result: "1235"

S1 = Format(Math_PI, "") Result: "3.14159265358979"

Format(1234.56, "+0.000;-0.000") Result: "+1234.6" or "-1234.6"

If you prefer a shortest name, you can use the Str (number, style) function which is
perfectly identical to the Format (number, style) function.

Str(1234.56, "000000,000") Result: "001234.560"

Str(1234.56, "0.0") Result: "1234.6"

Both functions can also be used by omitting the style parameter. In this case the
number will be converted with the max precision.

Format(Math_PI) Result: "3.14159265358979"

Str(Math_PI) Result: "3.14159265358979"

There are many other style options, such as the next two styles, that convert into
scientific notation, with one or two-digit exponent.

"0.000000E+0; -0.000000E+0"
"0.000000E+00; -0.000000E+00"

and the following notation convert "Now" to a date.

Str(Now, "yyyy/MM/dd HH:mm:ss") Result: 2024/11/30 09:50:14

For a full explanation of all possible formats read This Page.

In this application (and in the whole scientific world),
the point is always used for decimals,

even in nations and operating systems that use the comma.

theremino System - Theremino Automation - February 26, 2025 - Page 83

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-numeric-format-strings

The MouseX, Y, XP and YP functions

MouseX and MouseY returns the normalized position of the mouse cursor on the
screen from zero (left or bottom) to one (right or top). Normalized values are useful
for making adjustments as if you had a Joystick or two potentiometers.

In case of multiple screens this function uses only the screen on which the
Automation window is positioned.

MouseXP and MouseYP returns the position of the mouse cursor on the screen
with pixel values. Therefore, on the lower left the two values are zero, while on the
upper right the two values depend on the number of pixels on the screen.

In case of multiple screens the pixels start from the bottom left of the first screen to
the top right of the last screen and if the main screen is not the first then the
numbers that identify the pixels can also be negative.

The MouseButtons function
With MouseButtons you get a number indicating the mouse button pressed.

1 = left button / 2 = right button / 4 = central button

The combinations of buttons pressed simultaneously produce numbers which are
the sums of the individual buttons. So the numbers produced by this function can
go from 0 (no button pressed), up to 7 (all three buttons pressed simultaneously).

The MouseWheel function
This function returns a negative or positive number that tells how many clicks the
wheel has been rotated since the last time it was read.

To use it, for example to new an axis of a robotic arm you should:

Read MouseWheel frequently and add it to the previous value.

Limit the value between min and max of that axis.

Give the limited value to the axis.

The Automation application does not need to be selected, but the cursor must be
over the "Controls" box that contains the "Buttons". This is to avoid moving the
motor by mistake, if you use the wheel on other applications.

See the example Test_MouseWheel.txt
in the folder Programs\Demo Programs\Mouse

theremino System - Theremino Automation - February 26, 2025 - Page 84

The functions that read the pixel colors

These two functions read the color of the screen pixels.

GetCursorPixelColor Returns the color of the pixel pointed to by the cursor.

GetPixelColor(X, Y) Returns the color of the pixel specified with X and Y.

The color is returned as a 24-bit integer that contains red in the upper eight bits,
green in the middle eight bits, and blue in the lower eight bits. If you convert this

number with the HEX function you can distinguish the three colors well.

- - - - - -

The following functions extract the characteristics from the numeric variable "color"
and return a numeric value.

GetColorRed(color) Returns the amount of red (a number from 0 to 255)

GetColorGreen(color) Returns the amount of green (a number from 0 to 255)

GetColorBlue(color) Returns the amount of blue (a number from 0 to 255)

GetColorHue(color) Returns the hue (a number from 0 to 360)

GetColorSaturation(color) Returns the saturation (a number from 0 to 255)

GetColorLightness(color) Returns the luminosity (a number from 0 to 255)

- - - - - -

GetColorIndex(color) Returns the color index (from 0 to 8) chosen from the nine
following colors: Black, Red, Orange, Yellow, Green, Cyan, Blue, Purple, White

- - - - - -

The following two functions extract the name of the color from the numeric variable
"color" and return a value of type string.

GetSimpleColorName(color) Returns the name of the color chosen from the nine
following colors: Black, Red, Orange, Yellow, Green, Cyan, Blue, Purple, White

GetNearestColorName(color) Returns the name of the nearest known color.

- - - - - -

See also the examples in the folder:
" Programs \ Demo Programs \ Demo GetColors "

theremino System - Theremino Automation - February 26, 2025 - Page 85

The Key() function
Key() returns to the Boolean value True if the indicated key is pressed and the
Automation application is selected.

If you want the Key statement to act even when the Automation application is not
selected or, for example, when it is minimized, you can use the "Option GlobalKeys
Enabled" statement.

See the examples "Wait_Key.txt" and "Option GlobalKeys.txt" that are in the folder
"Examples\Demo Keys".

Note that the Wait instruction can wait for a condition to occur, so:

Wait Key ("Space") waits for the space bar to be pressed.

Wait Not Key ("Space") waits for the space bar to be released.

The “Input” function
This function pauses the program and waits for the user to input a value.

The value can be a string of characters, or a number, depending on whether you
use on the left of the "=", a string or numeric variable.

If the user presses CANCEL the variable is not changed.

Examples:

S1 = Input "Write your input here"

V1 = Input "Write a number"

See also the examples in the folder
"Demo Programs \ Demo Input"

theremino System - Theremino Automation - February 26, 2025 - Page 86

The “Message” function

This function present a message and waits the user to select "YES" or "NO"

Examples:

S1 = Message Do you confirm this?
V1 = Message Do you confirm this?

If a numeric variable is used to the left of the equal, then its numeric value will be
"0" for "NO" and "1" for "YES".

If instead the variable is a string it will directly contain "NO" or "YES".

If desired, you can write the text on several lines, using the CRLF characters, as in
the following example:

s1 = "First message line" + CRLF
s1 = s1 + "Second message line" + CRLF
s1 = s1 + "Please select YES or NO"
v1 = Message s1

See also the examples in the folder
"Demo Programs \ Demo Input and Message" folder

theremino System - Theremino Automation - February 26, 2025 - Page 87

The date and time functions
Date (Year, Month, Day) - Year, month and day converted to date

Now - Returns the date and time of the present moment

Today - Returns the date of the present moment

The functions that return a date (Date, Now and Today) may be used in
formulas. You can add or subtract one from the other and you can also add or
subtract with numbers. In this case the numbers represent days and the
decimal part of the number represents fractions of days (which are not
minutes or seconds but "fractions of days" ie, for example, "0.5" days are
worth 12 hours).

You have to be careful that these functions do not return strings but numbers
so in some cases they will not work, for example Print Left(Now, 2)

does not print the first two digits of the current year but prints "No".

In these cases you will have to transform the date into a string and then perform the
operations on it, for example with: Print Left(Str(Now), 4) that prints "2024".

The “ElapsedTime” function
ElapsedTime - Runners of the program.

This feature provides the seconds, since the program was started. The
seconds include decimals to the tenths of a microsecond.

To measure a time interval (stopwatch), you can set the starting time in a
variable (from v1 to v99 or another user-defined numerical variable) and then
subtract it from the final time. As in the following example:
v1 = ElapsedTime
...
...
Print ElapsedTime - v1

If you hold up the program for a long time, the ElapsedTime value grows a lot, but
not have to worry about that. Numeric rounding do not cause loss of precision, and
microsecond continue to be valid, even if you keep running the program for many
years.

To memorize time values it is best to use v1..v99 or the user-defined numerical
variables or the Arrays, which are double-precision (16 significant digits), and not
the Slots, that contain single-precision numbers (8 significant digits).

theremino System - Theremino Automation - February 26, 2025 - Page 88

The filtering functions

These functions are used to filter out noisy numerical data, just as you would with
classic electronic resistor and capacitor filters (HP = high pass / LP = low pass).

v2 = FilterHP (V1, Frequency, NumPoles)

v3 = FilterLP (V2, Frequency, NumPoles)

ATTENTION: these functions must be performed
with a frequency at least twice the set cut-off frequency

and a maximum of one can be written for each program line.

By setting NumPoles = 1 you get a filter made up of a single resistor and a single
capacitor that provides a slope of 6 decibels per octave (or in other words a halving
of the voltage for every doubling of the frequency (low pass filters) or for every
halving of the frequency (high pass filters).

By increasing NumPoles (up to a maximum of 99) you get filters composed of many
cells in cascade, which have a considerably greater slope and therefore a filtering
effect (up to almost 600 dB per octave). Filters of such high order would be
impossible to make with electronic components, not only due to the exaggerated
size they would get, but also because they would not work at all, due to the load
produced by the subsequent cells on the previous ones.

Normally a not very high number of poles is used (from 1 to 10) but if necessary
you can increase it and obtain more filtering. The only side effect of increasing the
poles is an increase in the transit time of the signals.

Examples

v1 = FilterLP(v1, 1.5, 1) This is a high pass filter, with a cutoff frequency
of 2.5 Hz and a single pole.

v3 = FilterHP(v2, 1.5, 1) This is a low pass filter, with a cutoff frequency of
1 Hz and fifteen poles.

Due to the fifteen poles this latter filter has a transit time of half a second, and with
sixty poles the transit time would increase to one second. But the transit time also
varies with the inverse of the frequency. So if the frequency were ten hertz these
times would drop to twentieths and tenths of a second.

theremino System - Theremino Automation - February 26, 2025 - Page 89

The “Media” functions
After starting sounds and videos with the "Load" instruction it may be useful
to wait for the execution to finish, or to know the current length and position in
seconds.

The following functions facilitate these operations.

MediaLength
The total length of the running file replies (in seconds)

MediaPosition
Replies the current position of the running file (in seconds)

MediaPlaying
It returns TRUE if the file is running, or FALSE if the run is finished.

Here is an example that starts a video and then waits the end execution:

Load Video1.avi

Wait Not MediaPlaying

- - - - - -

The examples are in the folder "Demo LOAD and MEDIA functions".

See also the commands Load Hide Load Stop Load Pause Load Position

e Load Play, which are used to control the execution of files,

and which are explained on this page.

theremino System - Theremino Automation - February 26, 2025 - Page 90

The XML file functions
DecodeXML

The XML = DecodeXML(XML, Section) function, accepts a string containing XML text
and returns a string that contains only the section of text that begins with <Section> and
ends with </Section>

You can use multiple successive DecodeXML lines to isolate a value. The first row will
isolate a block, the second row a sub-block and so on, until the single value is obtained.

Some XML files contain lists consisting of multiple sections with the same name. In these
cases a FOR loop is used which contains a DecodeXML with an additional parameter. The
additional parameter, which is also the increasing variable of the FOR loop, specifies
which section to extract. The values of this parameter start at one and grow until the
DecodeXML replies an empty string, then an Exit is used to end the cycle.

See the example "DecodeXML Plants"
and the other examples in the "Demo Programs \ Demo XML" folder

FormatXML

The XML = FormatXML(XML, Number-initial-spaces) function, accepts a string
containing XML text and returns a string with the leading spaces and the line-changing
characters, which make it human-readable.

In the following example, five leading spaces have been used. If in the function
FormatXML the second parameter is omitted, then two spaces are used.

<planes><plane><year> 1977 </year><make> Cessna </make><model> Skyhawk </model><color> Light
blue and white </color></plane><plane><year> 1975 </year><make> Piper </make><model> Apache
</model><color> White </color></plane><plane><year> 1960 </year><make> Cessna </make><model>
Centurian </model><color> Yellow and white </color></plane></planes>

<planes>
 <plane>
 <year> 1977 </year>
 <make> Cessna </make>
 <model> Skyhawk </model>
 <color> Light blue and white </color>
 </plane>
 <plane>
 <year> 1975 </year>
 <make> Piper </make>
 <model> Apache </model>
 <color> White </color>
 </plane>
 <plane>
 <year> 1960 </year>
 <make> Cessna </make>
 <model> Centurian </model>
 <color> Yellow and white </color>
 </plane>
</planes>

theremino System - Theremino Automation - February 26, 2025 - Page 91

The File and Folder functions
SelectFile (FolderName)
Opens a dialog and returns a String with the file path and name.

GetFileNames (FolderName)
Returns a String with all the path and file names, separated with CRLF.

GetFileNames (FolderName, Sorted, Extension)
The same of the precedent but eventually Sorted and selected by extension.

GetFolderNames (FolderName)
Returns a String with all the folder names, separated with CRLF.

GetFolderNames (FolderName, Sorted)
The same of the precedent but eventually Sorted.

FileExists (FileName)
Returns TRUE if the file exists.

AppRunning (ApplicationNameAndExtension)
Returns TRUE if the application is running.

GetTextFile (FileName)
Returns a string containing the file text.

GetApplicationPath
Returns a String with the application path.
In alternative you could use ".\xxx" to indicate the Automation.exe path.

GetFilePath (FilePathAndName)
Returns a String with the file path.

GetFileNameWithoutPath (FilePathAndName)
Returns a String with the file name only.

REMARKS
All the returned strings containing a path do not have the ending backslash.
File and Folder Names could be a string variable or a string like: "xxx.exe"
"Sorted" is a boolean variable, as immediate values you write: True or False.

- - - - - -

See also the example file: "Demo Files\SelectAndGetFilesAndFolders.txt"

theremino System - Theremino Automation - February 26, 2025 - Page 92

Auto indentation

The indentation improves the visibility of the program,
highlights the beginning and end of the structures, and
makes it easier to write error-free software.

The Automation application automatically indents
programs, while writing them.

Get used to see the indented software is an important teaching aid.

It will become easier then indenting manually, also using programming
environments that do not have the automatic indentation.

Label testAllSounds
 Wait Seconds 0.01
 If Slot(11) < 100
 If Slot(12) < 100
 If Slot(13) < 100
 If Slot(14) < 100
 Goto loop
 EndIf
 EndIf
 EndIf
 EndIf
Goto testAllSounds

Constructs auto completing

Pressing ENTER on a line of type For / If / Label or Select, the structure is
automatically completed with the corresponding instructions Next / EndIf / Return,
Case and EndSelect.

Before pressing ENTER, the For / If / Label or Select line must be complete and
valid.

- - - - - -

See also the examples in the folder
"Demo Programs \ Demo INDENT"

theremino System - Theremino Automation - February 26, 2025 - Page 93

Windows and Menus

The control buttons

The main functions are always available on the buttons, which can be pressed with
the mouse, or your finger on a touch screen.

The most important is the RUN to start and stop the
program.

Then there are the LOAD and SAVE buttons, which are
used to load and save programs (see also This Page that
explains how to edit and save programs).

The UNDO button is used to go back, if you have made changes to the program
and want to eliminate them. The REDO button reconstructs the changes eliminated
by UNDO.

The two dark ARROWS move the cursor, and also the visible page, on the program
sections previously visited.

The blue ARROW searches for all occurrences of functions, variables or even
simple words.

The red ARROW searches in the declarations only (Button, Key, Label e Variable)

The search functions are very convenient, just select a word or just position the
cursor on it and then press the arrow repeatedly.

If you are viewing a video or an image in full screen, these buttons are not visible.

On those occasions, to stop the program, you can use the following methods:

You can stop running the program at any time, with the key SHIFT-ESC, or
with ALT-E.

You can use the right mouse button and open the application menu (shown
on the next page).

You can start and stop the execution with F8 or with ALT-R

If the Debug window is open, the F8 and ALT-R keys do a “Run from
cursor”, otherwise the do a normal “RUN” from the program start.

theremino System - Theremino Automation - February 26, 2025 - Page 94

The application menu

By clicking the right mouse button (or by tapping the touch screen without lifting
your finger for two seconds), you open this menu.

When the program is stopped, you must click on the left side of the application
(control area), and not on the program area.

Instead, when the program is started, this menu appears when you click anywhere,
even on the program, as well as on the pictures and videos to full screen.

This menu allows you to open the Debug window, add and remove Breakpoints,
choose the size of the main window, Open, Close and Clear the TextBox, Stop the
execution of the program, and also totally close the Automation application.

Knowing about this menu is important.

Without him never be able to get out of some situations.

For example, when a full-screen video is active.

theremino System - Theremino Automation - February 26, 2025 - Page 95

The program menu

By clicking on the program area, with the right mouse button (or by tapping the
touch screen without lifting your finger for two seconds), this menu opens.

The program should not be running, otherwise instead of this menu would open the
one on the previous page. The first three lines of this menu are used for Debug
(software maintenance and monitoring) and will be better explained in This Page.

With "Comment" and "Uncomment" you comment (add initial quote) to whole
areas of the program. Or you delete comments.

"Go Back" and "Go Forward" move the cursor, and also the visible page, on the
program sections previously visited.

"Go to the next occurrence" searches other occurrences of the selected word.

"Go to declaration" searches the selected word in the declarations rows only.

The commands "Cut", "Copy", "Paste", "Delete" and "Select All", they copy,
paste, delete and sort the parts of the program. In their place, you could also use
CTRL-X, CTRL-C, CTRL-V, DELETE and CTRL-A.

With "Find" (or CTRL-F), and "Replace", you open the windows to find and replace
words and phrases.

The last line "Font", is used to choose the font. Clicking on it opens a list of font
types, on the left side of the application, and some control buttons.

theremino System - Theremino Automation - February 26, 2025 - Page 96

Find and Replace

With the latest voices at the bottom of the application
menu, you open two windows, similar to each other.

The "FIND" window

With this window you look for words or phrases in the text of the program.

If you enable "Whole Word", the word must be complete.

If you enable "Match case", the word should also match as case sensitive.

With "Find next" (or F3), you go to the next occurrence of the searched word.
If you get to the end of the research program starts from the beginning.

The "REPLACE" window

This window is the same as the previous, but also lets you replace the word (or
phrase) with another.

If you press "Replace" is carried out only one replacement. But with "Replace All"
you replace all occurrences.

The substitution can happen in all the program or only in the selection, or only in
the lines containing errors (or warnings).

theremino System - Theremino Automation - February 26, 2025 - Page 97

Full Screen operation

"Full screen" means that the
display has no visible window
edges, and that the desktop bars
are hidden.

Automation can view in “Full
screen” all the pictures and video.

Even web pages, and the text of
the program, are displayed in full
screen, but with the buttons
vertical bar on the left.

To open the window in full screen, you can use the
menu that opens, right-click the mouse, and choose
"Full Screen".

To return to the “in window” operation, you choose
the "Maximized", "Sizable" or "MinSize" options.

Alternatively, to exit from the FullScreen condition,
you might interrupt the execution of the program,
with the buttons SHIFT-ESC or ALT-E.

While the program is running you can also use the
Window MinSize, Window Fullscreen,
Window Maximized and Window Sizable
instructions which are explained in this page.

- - - - - -

To experiment with the "Windows" instruction,
and with the various dimensions of the window,

see the "Demo Programs \ Demo – Windows" example.

theremino System - Theremino Automation - February 26, 2025 - Page 98

The top bar controls

The first buttons adds or removes a bookmark. With the second you
can delete all the bookmarks.

These buttons comment and de-comment the selected text.

The blue arrows are used to go back in the changes to the program
and to reconstructs the eliminated changes.

The two dark ARROWS move the cursor, and also the visible page,
on the program sections previously visited.

The blue ARROW searches for all occurrences of functions, variables or
even simple words.

The red ARROW searches in the declarations only (Button, Key, Label and
Variable)

The search functions are very convenient, just select a word or just position the
cursor on it and then press the arrow repeatedly.

The gear opens the debug window.

The question mark opens the instruction file (Help) in the chosen
language. To make this command work, you need to copy the Help file of

your preferred language to the "Automation \ Docs" folder. The latest Help files are
downloaded from this page.

If the Help file is not found then a message appears suggesting to open the Docs
folder and copy the file into it.

Or you could choose to select a Help file in your preferred language located in the
"Docs" folder or any other folder. To change the selected file click this command
with the right mouse button.

theremino System - Theremino Automation - February 26, 2025 - Page 99

https://www.theremino.com/en/downloads/automation

The bottom bar controls

The SPEED slider sets the program execution speed.

The speeds range from "1" (one instruction per second), until "8" (ten
thousand instructions per second), and to "9" (the maximum speed allowed
by the system).

While writing the program it is good to use an average speed. Usually the
speed "5" (20 instructions per second), Which is slow enough to be able to
visually follow the execution of the program.

The ZOOM slider sets the size of text, both in the program window, or in the
Debug window.

This slider adjusts the transparency of the main window and allows you to
see also below it.

This button enables the automatic "scroll" of the program during execution.
You keep it disabled in order to focus on a function. Instead, it is enabled
when you want to follow the general progress of the program.

The right side of the lower bar shows information about the program:

- The total number of lines

- The line where the cursor is (starting from line 1)

- The column where the cursor is (starting from column 1)

theremino System - Theremino Automation - February 26, 2025 - Page 100

The Debug Window

The "Debug" window facilitates the development of the software. To open it
you press the right button of the mouse on the map area, and choose
"Debug".

The two main functions are: "RUN FROM CURSOR", which allows you to run
the program from anywhere, and "SINGLE STEP", which allows you to run
one line at a time.

To run the program from an arbitrary point, first of all the stops with the STOP
button in the main window. Alternatively, you can stop it by pressing RUN
FROM CURSOR (F8) or SINGLE STEP (F5). Then you place the cursor on
the line you want to execute, and you press one of these buttons.

If the Debug window is open, the F8 key does a “Run from cursor”, otherwise
it does a normal “RUN” from the program start.

The other functions of this window are: The Watch (watch expressions), the
exec line (execute instructions), BreakPoints (interruption points), and two
option buttons (green buttons) which will be explained in the following pages.

Experiment with the examples of the "Demo Debug" folder

theremino System - Theremino Automation - February 26, 2025 - Page 101

The Debug Window (Breakpoints)

The CONTROL button + Left
mouse click adds or removes
breakpoints.

You can use this method even while
the program is running.

Also when you add a breakpoint the
Debug window opens automatically
and this is very convenient for
intercepting the program while it is
running.

When the program is not in execution you can edit the "Breakpoints" with the
menu that opens, clicking with the right mouse button on the program lines.

When the Debug window is open, the program stops at every line ending with
'Breakpoint .

Instead, If the Debug window is closed, Breakpoints are ignored. So it is
possible to leave them in the preferred positions, even in the final program.

When the program is stopped at a breakpoint, you can use all the options in
the Debug window.

You can explore the values of the variables, and the slot (0 to 999), with
the watch table.

In the Watch you can also write complex expressions and calculations.

You can edit the values of variables and Slot, writing assignments in the
EXEC line

You can execute instructions, writing in the low line and pressing EXEC

You can continue to run with RUN FROM CURSOR

You can run a single line, with SINGLE STEP

You can change the position of running, and then continue with RUN
FROM CURSOR or SINGLE STEP

theremino System - Theremino Automation - February 26, 2025 - Page 102

The Debug Window (Watches)

Each row of this table is a
"Watch" (control expression).

With the watch you look at the
values of variables and their type,
and controls the operation of the
program expressions.

The Watch are added by selecting a
variable, function, or expression of
program, and then pressing the "ADD
WATCH" button.

To delete one or more watch, you select
the chosen lines, pressing the right
mouse button on the table, and you use
the menu visible on the right.

To edit a watch you double-click with the left mouse button, on his line, and change
the text of the expression with the keyboard.

The Automation application Watches are very powerful, you can write complex
expressions, make calculations, check if expressions are true or false, read the
values of the slot, add text strings, etc...

Moreover, unlike almost all programming environments, The Watch are updated in
real time (ten times per second), even with the program stopped. So they always
reflect the actual value of the expressions and Slots. Not even DotNet does this,
and it is a very useful feature.

- - - - -

Experiment with the examples of the "Demo Debug" folder

theremino System - Theremino Automation - February 26, 2025 - Page 103

The Debug Window (Exec)

The bottom line of the Debug window, you can execute instructions and assign
values to variables and to Slots.

Using the word Print, you can print complex expressions results, and then have
them calculate and know the result.

You can also write the Goto and Gosub, and then press EXEC and jump to the
corresponding labels, even while the program is running.

The line also accepts multiple instructions on the same line (separated by a colon,
as shown in the example below).

You can use just about any instructions that may be written in the program.

The only keywords not valid are: If, Else, Endif, Select, Case, CaseElse, EndSelect,
Return, Stop and Wait. Writing them do not get any effect, they just do not run.

- - - - -

When you write in the EXEC line, the errors and suggestions are shown in the low
bar of the main window.

Clicking on the "Select next line" button you jump to the next error line. More info
about errors and suggestions in the page “Keywords”.

- - - - -

Experiment with the examples of the folder "Demo Debug"

theremino System - Theremino Automation - February 26, 2025 - Page 104

The Debug Window (Pause Button)

The new "PAUSE BUTTON SLOT" option,
introduced by Automation version 4.5, enables an
external mechanical button to pause program
execution.

To enable this option you open the debug window,
as explained in the previous pages.

Then click on the button called "Set the pause
button" and write a Slot number.

This number (from 1 to 999) must correspond to the
slot to which an external button is connected.

To enable the external button, write a number from 1
to 999 in the "Input" window, and then press OK.To
disable it, write a zero, or clear the box and press OK.

When the external button is connected to a Slot
the "Pause Button Slot" button turns dark green
and indicates the number chosen for the Slot.

Pressing the external button the program
execution stops. Releasing it the execution
resumes.

Normally the pause is activated when the Slot value is more than 500, but it is also
possible to define a different value, and also to define if the Pause must be
activated for values more or less then this value. This is better explained with the
following examples:

12 The pause is activated when the Slot 12 value is more than 500
12>300 The pause is activated when the Slot 12 value is more than 300
12<10 The pause is activated when the Slot 12 value is less than 10

During the pause all the application borders colors are orange and you will also be
warned by a message in the lower line of the application.

theremino System - Theremino Automation - February 26, 2025 - Page 105

The Debug Window (Pause Button with LEDs)

When large machines are used, sometimes work is done using commands
close to the machine (joysticks and buttons) and not always looking at the
monitor. In some cases the monitor could also be turned off and the whole
interaction could take place by watching how the machine moves and by
means of sounds and lights (usually tricolor LEDs or traffic lights) that
indicate the various states of the machine (OK, attention, errors, etc.).

It can therefore happen to have the Pause button pressed and not know it,
and consequently imagine defects that do not exist, They therefore asked us
to be able to color the LEDs with a color of your choice and also to make
them flash when the Pause button is pressed.

First of all, to be able to adjust their brightness, the LEDs must be connected to
Slots configured as Pwm16. And it is also recommended to set them as logarithmic
to have a more linear adjustment, similar to what the human eye sees.

Then you will have to press the "Set pause
button" and set it with more than one number.
The first number (12 in this example) indicates
the Pause button Slot, while the following
numbers indicate the LED Slots.

If you set the LED Slots, the green button becomes
like in this image.

The example "12 20 21" indicates to turn on the LEDs connected to Slots 20 and 21
to maximum light, when pressing the button, and turn them off when it is released.

The number of LEDs to turn on depends on how many numbers are written, one,
two, three or even more can be turned on.

You can also make the LEDs blink with a frequency from 0.2 to 20 Hertz, by writing
at the end "F=" followed by a number. The following example causes the LED
connected to Slot 20 to blink at a frequency of 3 Hertz.

And finally, you can also determine the brightness of each LED. The following
example turns on the LED connected to Slot 20 with 800 brightness, 21 with 500
brightness and 22 with 100 brightness and also makes them blink. If a tricolor LED
is used, the result is a fast blinking Orange light.

theremino System - Theremino Automation - February 26, 2025 - Page 106

The Debug Window (Pause Button adapters)

To connect the Pause and Stop buttons we have prepared small adapters in three
versions. The first version (positive) is suitable for normally open pause buttons, the
second (negative) for normally closed ones and the third is just a series of holes,
useful for those wishing to build special adapters.

The PAUSE button is of the latch type, ie it remains pressed by itself.

The RUN button is used to temporarily unlock the pause.

The STOP button is used to end the program, but note that it is not managed
directly by the Automation application. So you will have to write some program lines
to read and manage it.

The projects of these adapters with wiring diagrams, 3D images and Eagle files for
making printed circuit boards are downloaded with this link: PauseAdapters

If you want to buy them already assembled, or possibly just PCBs or component
KITs, look for them on www.store-ino.com or on eBay from the seller
maxtheremino.

theremino System - Theremino Automation - February 26, 2025 - Page 107

https://www.ebay.it/usr/maxtheremino
http://www.store-ino.com/
http://www.theremino.com/files/PauseAdapters.zip

The Debug Window (Recycle Bin)

Whenever you edit the program text and run it, or load another program or close
the Automation application, the current program is saved to disk.

It may happen that you made involuntary changes or made mistakes and only
noticed the following day. Or it could happen to cancel a program by mistake.

In these cases we would like to recover the previous program which has however
been overwritten by the new version or deleted.

The new "Recycle Bin" option, introduced by version 6 of Automation, saves any
previous version in the recycle bin before overwriting it.

To enable the use of the recycle
bin, click on the "Not using
recycle bin" button.

When this option is enabled the
button turns to a darker green
and the button text is changed to
"Old programs to recycle bin"

It will then be possible to recover all previous versions, by opening the operating
system recycle bin, dragging the files (one at a time) into a folder and opening them
one by one with NotePad, until you find the desired version.

theremino System - Theremino Automation - February 26, 2025 - Page 108

Programming tecniques

Some Automation language instructions perform operations that would
require entire program pages with other languages. To explore all the
possibilities of the language we recommend loading, reading and running the
examples found in the folders:

Simple programs
These are programs of a few lines, just to start seeing something moving.

Demo Programs
This folder contains the most important examples, which explain all the
keywords of the language.

Advanced Programs
Here are the more complex programs that have been created. Programs
even with 1000 or 2000 lines, at the limit of Automation's possibilities.

The most complete examples are "WXM_CNC_Vslot_Automation" and
"WXM_CNC_Vslot_longrail" which are in the "Advanced Programs" folder
(to run the sequence, and the LOGs, you will also need to use the blue
"Select sequence" button and choose the "CNC_PP_Cycle" or "LinearTest").

These programs wait for the machine reset signal at start up and every time
the sequence is started. If you don't have the hardware you can get past
these blocks by long pressing the CTRL key. And you could also comment
the lines that test the Master, the RS485 and the TestRAW.

Many of these programs do not work or work only partially because they
would need specific hardware and also a folder and file structure made just
for them. But can be useful for studying the techniques and for copying some
functions to be used in your own programs.

- - -

The next few pages explain some of the techniques developed when creating
complex automation programs. These techniques can be useful in some
cases, but to use them you need to have a good level of programming
experience.

theremino System - Theremino Automation - February 26, 2025 - Page 109

Special applications and folders

In the same folder where the main file of this application is located, which is
called "Theremino_Automation.exe", you will also find a folder named "Apps",
which contains other applications of the Theremino system.

These applications are used by many Automation examples. Programs often
load them on startup and let them close automatically when Automation is
closed.

Some of the most often used applications are:

Theremino_HAL to communicate with the Masters via USB.

Theremino_SlotViewer to view the Slots and modify them in the tests.

Theremino_SignalScope to view the Slots as with an oscilloscope.

All these applications must be in the "Apps" folder, in order to share the
"SlotNames.txt" file which contains the names and options of the Slots.

Sometimes multiple copies of an application are used, especially the
SlotViewer and the SignalScope and in this case a number is added at the
end of the name, as in this example: "Theremino_SlotViewer1.exe".

Important
Applications located in the APPS folder

may not be the latest versions.
They are fine to try the examples of Automation,

but to use them in new programs it is advisable to replace them
with the latest versions that are downloaded from the Theremino site.

theremino System - Theremino Automation - February 26, 2025 - Page 110

Open files with Notepad and other apps

These examples open some applications on the Windows system

Label OpenNotepad
Load "C:\Windows\Notepad.exe"

Return

Label OpenCalculator
Load "C:\Windows\system32\Calc.exe"

Return

Label OpenPaint
Load "C:\Windows\system32\mspaint.exe"

Return

Experiment with the "Open Notepad and Apps" example
located in the "Examples \ Demo Files" folder

Opening applications, for example Notepad, also indicating a file to open is
more complex, it is therefore advisable to prepare variables that contain the
paths and names of the files and then use them with Load VariableName, as
in the following example:

Label InitNotepadPaths
Variable String EditorFolder
Variable String NotepadApp
Variable String EditSequence1
EditorFolder = "Apps\Theremino_Editor\"
NotepadApp = "C:\Windows\Notepad.exe"
EditSequence1 = NotepadApp + " " + EditorFolder + "Sequences\CircleTest.seq"

Return

Label OpenNotepad
Load NotepadApp

Return

Label OpenSequence1
Load EditSequence1

Return

Experiment with the "Open Notepad With Files" example
located in the "Demo Programs \ Demo Files" folder

theremino System - Theremino Automation - February 26, 2025 - Page 111

Open folders

These examples open some folders of the Automation application. Note that
the dot + backslash indicates the main folder of the Automation application,
that is the folder where the "Automation.exe" file resides.

Label OpenMainFolder
Load ".\"

Return

Label OpenFilesFolder
Load ".\Files"

Return

Label OpenMediaFolder
Load ".\Media"

Return

To indicate folders and sub-folders of the Automation application, the point
and the backslash can be omitted, so the three previous examples can simply
become:
 Load "" Load "Files" Load "Media"

A double period is used to indicate the upper folder. For example to open the
folder that contains the folder of the Automation.exe file you can write:
 Load ".."

These examples open the C drive and some Windows System folders.

Load "C:\"

Load "C:\windows"

Load "C:\windows\system32"

- - - - -

Experiment with the "Open Folders" example
located in the "Demo Programs \ Demo Files" folder

theremino System - Theremino Automation - February 26, 2025 - Page 112

The "Theremino Editor" application

With this application it is possible to modify command sequences during the
execution of an Automation program. See on the next pages how the sequences
are used.

The peculiarity of this editor is to modify the sequence file while writing, without the
need to use the "Save" command each time. So you can make changes "on the
go", without having to stop and restart the execution of the Automation program.

By clicking on the name of the sequence, the folder with the sequence files opens
in the first line at the top and can be copied, renamed and deleted.

In the options that open by
clicking on the gear you can
also choose to save only
when you go to a different
row, or only when you click
on another application, or
when you press CTRL + S.
Also in the options that open
with the gear is the "Edit
Keywords File" button which
opens Notepad with a list of
keywords.

You can add new words to
the list to show errors in a
different color and thus make
it easier to write sequences.

Some commands can be
composed of a single word,
others also have parameters.

You will find many example commands, if you don't need them, delete them and
write your own.

ATTENTION: The commands that are written in the sequences are not executed
automatically, but must be interpreted in the "CASE" of the sequence executor that
is written in the Automation program.

Experiment with the "Demo OPEN EDITOR" example
located in the folder "Demo Programs \ Demo Sequences"

theremino System - Theremino Automation - February 26, 2025 - Page 113

Start "Theremino Editor" with files

Launch the Theremino_Editor application passing the name of the sequence as a
command line parameter requires a line that contains two paths separated by a
space. It is difficult to write everything in one line without making mistakes, so it is
advisable to prepare variables with paths, as in this example:

Label InitEditorPaths
Variable String EditorFolder
Variable String EditorApp
EditorFolder = "Apps\Theremino_Editor\"
EditorApp = EditorFolder + "Theremino_Editor.exe"

Return

Label OpenSequence1
Load EditorApp + " " + EditorFolder + "Sequences\CircleTest.seq"

Return

Label OpenSequence2
Load EditorApp + " " + EditorFolder + "Sequences\TestSeq.seq"

Return

Experiment these techniques with the "Demo OPEN EDITOR" example
located in the "Examples \ Demo Sequences" folder

Open sequences with Notepad

You could also open sequence files with Notepad. Using Notepad is easy but
compared to Theremino_Editor you lose the error reporting and also after each
change you must remember to save the file.

Here are two examples that open sequences with Notepad:

Load "Apps\Theremino_Editor\Sequences\CircleTest.seq"

Load "Apps\Theremino_Editor\Sequences\TestSeq.seq"

Experiment with the "Demo SEQUENCES" example
located in the "Demo Programs \ Demo Sequences" folder.

theremino System - Theremino Automation - February 26, 2025 - Page 114

Using "Sequences"

Sequences are just a list of commands written in a text file. But it is not a language!
You decide the words to execute, write them one by line, and then in the
Automation program write what it takes to execute them.

In the Automation program the sequences are executed by a special function that
we normally call "ExecSequence". To this function you must add all the "Case" that
are needed to execute the commands. Some of the commands may also include
parameters.

Using sequences is not easy, you have to decide the names of the commands,
write what is necessary to execute them and also add them to the list of valid
commands of the sequence editor. The list of valid commands is only used to
change color in case of an error, but it is a great help to avoid making mistakes.

Experiment with the "Demo OPEN and RUN Sequences" example
located in the "Demo Programs \ Demo Sequences" folder.

theremino System - Theremino Automation - February 26, 2025 - Page 115

Using the graphic chars

With the graphic characters you can build rectangles and dividing lines, useful for
writing titles and highlighting the various areas that make up the programs.

To write graphic characters in your programs, copy them one by one from the
"GraphicChars.txt" file.

To facilitate the composition of the rectangles we have prepared a second file called
"BoxExamples.txt", from which to copy the complete rectangles, and then
eventually modify them, by adding lines to lengthen them or by adding characters in
between to widen them.

Both files are located in the "Demo Programs" \ "Graphic Chars" folder.

Having to copy many characters, you could simplify the copy and paste operations
by keeping two copies of Automation open, one with the graphic character file to be
copied and the other with your own program on which you will paste the characters.
To open a second copy of Automation you must hold down SHIFT while starting it.

To view all the graphic characters, even the strangest,
you have to choose the font "DejaVu Sans Mono" or the "Fira Mono".

If you limit yourself to the most common graphic characters, including frames chars,
you can also use the fonts: "Courier New", "Cousine" and "Lucida Console".

theremino System - Theremino Automation - February 26, 2025 - Page 116

Sew Machines functions

These functions control the position of the fabric
and the movement of the needle in the industrial
Sewing Machines.

The SewScope application

This application simulates the
movements of a sewing machine
and can be useful for fine-tuning
sewing programs without using
thread and fabric.

The SewScope application is
always available in the Apps
folder and can be opened by
automation programs with the
Load command.

Operating limits for the Sew functions

The Stop_Angle is the angle of the Z axis when the needle enters the fabric.
The Start_Angle is the angle of the Z axis when the needle comes out of the fabric.

When the Z axis rotates to Start_Angle, the X and Y axes are moved to the next
destination with the maximum possible acceleration and speed.

To compensate for the acceleration limits of the Z axis and minimize inaccuracies at high
speed, the Start_Angle setting should be increased from a standard value of 270 ° to
approximately 350 °

The StopAngle is not used in the "Sew" functions, but is the angle at which the needle
enters the fabric. If the Z axis rotates past StopAngle, when X and Y have not yet reached
their destination, the needle moves sideways and the seam becomes inaccurate. This
limits the maximum linear speed (mm/s) and the maximum sewing speed (stitches/sec).

theremino System - Theremino Automation - February 26, 2025 - Page 117

Sew functions

These functions (rarely used and little tested) drive the three stepper motors of
computerized sewing machines.

The X and Y motors move the fabric and the Z motor lowers and raises the needle
with each revolution.

The Z motor value 1 represents one 360 degree revolution, so multiples of 1
indicate "needle up" and multiples of 0.5 indicate "needle down".

SewInit SlotX SlotY SlotZ StopAngle StartAngle

Initialization parameters (all integer values).
The three Slots are an integer from 1 to 999.
StopAngle is the angle to stop moving XY (about 90 degrees - not used).
StartAngle is the angle to start moving XY (about 350 degrees).

SewLimits Xmin Xmax Ymin Ymax MaxPerSec

Movement limits (all float values).
Xmin, Xmax, Ymin and Ymax are in millimeters.
MaxPerSec is the maximum number of points per second.

SewTo DestX DestY Speed Pitch Options

Instruction that starts a sewing segment execution.
DestX and DestY are the end-of-segment destinations in millimeters.
Speed is the speed of movement in mm per second.
Pitch is the width of the stitches in millimeters.
Options is a string of options starting and ending with double quotes.

SewAbort

The SewTo command is asynchronous and runs on a separate thread, until
the segment is completed or until it is stopped with SewAbort..

Var1 = SewProgress

The variable Var1 receives a number from 0 to 1.
This number indicates how much of the last SewTo has been executed.

theremino System - Theremino Automation - February 26, 2025 - Page 118

Sew functions - Examples and Notes

Examples of options for the SewTo function

 DestX DestY Speed Pitch Options

SewTo 70 35 20 4 "Radius=5" Circle with 5 mm radius

SewTo 70 35 20 2 "ZigZag=2" ZigZag of 2 mm (+/- 1mm)

SewTo 10 30 20 5 "Begin=2" Two starting points

SewTo 10 30 20 5 "End=3" Three final points

The options "Begin" and "End" are not implemented.

You can also combine all the options, as in the following example

 DestX DestY Speed Pitch Options
SewTo 70 35 20 4 "Radius=5 ZigZag=2 Begin=2 End=3"

Speed limits tested on a sewing machine with three medium-sized stepper
motors

• Maximum linear speed: 20 mm/s (visible inaccuracies at 30 mm/s)

• Maximum sewing speed: 10 stitches/s (visible inaccuracies at 15 stitches/s)

Adjustments of the motors on the HAL application

• Motors X and Y --- MaxSpeed=15000 MaxAcc=5000 StepsPerMM=16

• Motor Z --- MaxSpeed= 3000 MaxAcc=260 StepsPerMM=400

Simplified table for speed parameter adjustments
 Pitch Speed Speed Stitches per sec
 max limit resulting
 1 mm 10 mm/s 15 mm/s 10 (15 max)
 2 mm 20 mm/s 30 mm/s 10 (15 max)
 >2 mm 20 mm/s 30 mm/s less then 10

theremino System - Theremino Automation - February 26, 2025 - Page 119

Known issues

The single quote does not work well

The single quote is the one used to start comments. It may happen that pressing
the single quote on the keyboard does not appear. To make it appear, press the
button a second time.

This defect happened only in China on some computers that had been installed in a
particular way. We could not reproduce it and therefore we cannot debug.

To solve it, select the "English US" keyboard instead of the "English international"
keyboard. The selection of the keyboard is in the Windows lower bar, to the right,
near the clock.

Text too large on the control buttons

On some computers in China it happened that the buttons on the left of the
application had too large writing. We could not reproduce this defect.

Variables incorrectly referred to as duplicated and other errors

Sometimes some variables turn red and when you move the cursor over them you
can read that they are duplicated or you get other errors. Normally using the UP -
DOWN arrows, or press the "Select next error" button, the errors disappear.

In case of persistent and incomprehensible errors it is recommended to press the
right mouse button on the LOAD button. In this way the program is reloaded and all
the error tables are emptied and rebuilt. Sometimes with this method some errors
fix themselves automatically.

Other known defects

Currently (Version 7.8 of 1/December/2024), we know of no other defects. If you
find one, please email us at: engineering@theremino.com

theremino System - Theremino Automation - February 26, 2025 - Page 120

mailto:engineering@theremino.com

	Premises
	Run multiple instances of Automation
	Load and run programs
	Edit and save programs
	Program execution
	Executed lines visualization
	The vertical scrollbar and the Bookmarks
	Test the values during the execution
	Simple programs to start
	Program structure
	Resize the application controls
	Keywords

	Keywords one by one
	Array
	ArrayClear
	ArrayLength function
	ArrayToString function
	Beep
	Beep Frequency Duration
	Beep "String of chars"
	Button
	Button - Identify the corresponding labels
	Button Text
	Button Disabled / Enabled
	Button Slot
	Button Color
	Button Color Flashing and RGB
	Button used as Labels
	Button Text and Identifiers
	Button - Using formula instead of numbers
	Button that change state
	Buttons with images
	COM (serial port) - Commands
	COM (serial port) - Functions
	COM (serial port) - Receive buffer
	Controls
	Controls - SetCursorPos <X Y>
	Controls - SetBackColor <color>
	Controls - TextBox
	Controls - Close and resize the TextBox
	For - Next
	For - Next with Step
	For - Next instead of While
	Exit
	Exit "n"
	Goto - Gosub - Return
	Eliminate Gosubs and send parameters to Functions
	If - Else - Endif
	Key
	Label
	Eliminate Gosubs and send parameters to Functions
	Label EventStop
	Label EventTimer
	Label Event_DroppedFile
	Label Event_ExternalCommands
	Commands from COBOT to Automation
	Commands from Automation to COBOT
	External commands to Automation Buttons
	Load (Applications)
	Load OpenApps
	Load CloseApps
	Load CloseAll
	Load CloseApps file-name
	Load CloseApps process-name
	Load CloseApps Windows
	Load Slots / Save Slots
	Load Vars / Save Vars
	Load Vars - Beware of Initializations
	Load (Images, Videos and Sounds)
	Load (txt, pdf, doc, etc...)
	Load (Program)
	Load (Variable from File)
	Load (web address)
	Load (options for web pages)
	The "Option" statements
	PressKeys
	SendKeys
	Print
	Save
	Select - Case - CaseElse - EndSelect
	Select - Case (special features)
	Slot
	The Command Slot
	SlotText
	Speed
	Stop, End
	TTS (Text to speech)
	Variable
	Variable - Immediate assignments
	VarsFromFile
	Wait
	Window commands
	Window

	Calling functions
	Function parameters

	Expressions and Functions
	Expressions results
	The Slot () function
	Numerical functions
	String functions
	Conversion functions
	The Format() and Str() functions
	The MouseX, Y, XP and YP functions
	The MouseButtons function
	The MouseWheel function
	The functions that read the pixel colors
	The Key() function
	The “Input” function
	The “Message” function
	The date and time functions
	The “ElapsedTime” function
	The filtering functions
	The “Media” functions
	The XML file functions
	The File and Folder functions

	Auto indentation
	Constructs auto completing
	Windows and Menus
	The control buttons
	The application menu
	The program menu
	Full Screen operation
	The top bar controls
	The bottom bar controls
	The Debug Window
	The Debug Window (Breakpoints)
	The Debug Window (Watches)
	The Debug Window (Exec)
	The Debug Window (Pause Button)
	The Debug Window (Pause Button with LEDs)
	The Debug Window (Pause Button adapters)
	The Debug Window (Recycle Bin)

	Programming tecniques
	Special applications and folders
	Open files with Notepad and other apps
	Open folders
	The "Theremino Editor" application
	Start "Theremino Editor" with files
	Open sequences with Notepad
	Using "Sequences"
	Using the graphic chars

	Sew Machines functions
	Sew functions
	Sew functions - Examples and Notes

	Known issues

